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Resumo

Esta dissertação tem como objetivo a implementação em FPGA de uma Rede Neuronal Long
Short-Term Memory (LSTM).

As redes neuronais são uma das técnicas mais usadas na área da Aprendizagem Computacional
Profunda. Esta rede em particular, a LSTM, é uma rede recursiva, na medida em que a saída da
cada neurónio, num instante de tempo, também serve de entrada no instante de tempo seguinte, e
os seus elementos de memória conseguem recordar padrões em sequências de dados, apresentando
vantagens claras, neste campo, face a redes neuronais convencionais.

As aplicações das Redes Neuronais são inúmeras, como se poderá atestar no capítulo que faz
o levantamento do estado-da-arte. Embora a implementação em software seja a solução comum
para todas estas arquitecturas, as implementações em hardware são ainda poucas e os benefícios
do paralelismo inerente a uma plataforma de hardware dedicado não são aproveitados. É nesse
enquadramento que este trabalho se posiciona, apresentando uma implementação inédita de LSTM
em FPGA, fazendo apenas uso de recursos internos à mesma, apresentando um speed-up de 251
vezes face a uma implementação software — executada num Computador de alta performance —
assim como a proposta de um circuito auxiliar que permita fazer o treino on-chip da rede, usando
um método de perturbações estocásticas simultâneas (SPSA).
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Abstract

The objective of this Dissertation work is to implement a Long Short-Term Memory (LSTM)
Neural Network in an FPGA platform.

Neural Networks are one of the most commonly used techniques in Deep Learning. This
particular type of network, as LSTM Network, is a recursive network, given that the neuron outputs
in a given time are also fed as the input in the next time step and, that way, their memory elements
can make sense of patterns within data sequences, unlike conventional neural networks.

This type of network, as well as many other kinds of networks, have been profusely imple-
mented in software, and their practical applications are plentiful, as one can attest in the State of
the Art chapter. However, there are only few FPGA implementation of these algorithms, and the
benefits of the inherent parallelism offered by a dedicated hardware platform are not availed. This
work, then, implements an LSTM Network in FPGA, using only its internal resources, and achiev-
ing a 251× speed-up in processing time when compared to a software implementation, running on
a high-end Desktop. A circuit that will allow on-chip training for this network, using simultaneous
stochastic perturbations (SPSA), is also proposed.
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“When you have exhausted all possibilities, remember this - you haven’t.”
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Chapter 1

Introduction

In this work, a hardware implementation of an LSTM Neural Network is presented, along with a

proposal for a digital circuit that performs on-chip training. In the reference example, the proposed

hardware network was 251 times faster than the reference software implementation running in a

high-end Desktop. The training convergence, although simulated, was not conclusive.

1.1 Background

Artificial Neural Networks are one of the most popular algorithms in the field of Machine Learn-

ing. As the name suggests, their operation is inspired by the operation of the building blocks of

our brain, the neurons. In spite of its high performance, one of their shortcomings is the fact that

they cannot retain temporal dependences in a stream of data samples, thus not being suitable to

process time-series data, such as audio, video or other kinds of time-varying data streams, where

inputs at a given time step have a high temporal dependence with previous and future inputs.

To address this issue, several algorithms have been used, such as Hidden Markov Models

(HMM) or Recurrent Neural Networks (RNN), but both of these methods fail to recall temporal

dependences that extend over a large period of time, for the reasons that we will understand in

Sections 2.1.3 and 2.1.4. In 1997 Hochreiter et al. proposed a novel RNN structure [4], the Long

Short-Term Network (LSTM), where a memory cell was introduced, and the input/output/read-

/write access is controlled by individual gates that are activated both by the incoming data samples,

but also by the outputs from the previous time-step (it is an RNN after all). They are one of the

state of the art methods in Deep Learning nowadays, as we can attest in Section 3.1.

1.2 Motivation

Hitherto, and to the best of my knowledge, all of the published applications that use LSTM are

software based. But the parallel nature of the structure hollers for a dedicated hardware realiza-

tion that can dramatically increase its performance, something that has only recently been done

once [5] (see Section 3.2 for further details), and although it improves the processing time when

1



2 Introduction

compared to a naïve software solution, it makes use of external memory to store the network pa-

rameters, which undermines the network performance. Furthermore, the design is not flexible to

accommodate networks of different sizes, and lacks the ability to perform on-chip learning.

All these techniques are generally implemented in mainstream processors, making use of gen-

eral high-level or low-level languages, where all the real parallelism is limited to the number of

simultaneous threads that we can run on each physical core, which up to now generally have

between 2-8 cores (mobile devices and general use personal computers),

In order to parallelize the computations to the fullest extent, a solution is to port it both to

a Graphics Processing Unit (GPU) or even a Field-Programmable Gate Array (FPGA), but the

porting process is not entirely automatic and to have the least performance drop possible, it has

to be explicitly programmed in CUDA/OpenCL for GPUs, and a Hardware Description Language

for FPGAs, with an increasing level of complexity and low-level details. Therefore, it is necessary

to provide frameworks that can allow an FPGA to quickly reconfigure itself to run these kind of

networks on demand, for a particular task that requires them, achieving a lower computation time,

and unburdening the CPU from running it, thus saving performance for running other tasks related

with the Operating System, for instance. Furthermore, when processing an incoming stream of

highly dimensional data, or with high throughput, a CPU solution might not be scalable, and

could benefit greatly from a dedicated hardware implementation.

1.3 Objectives

Taking into account the considerations done in 1.2, a hardware implementation of an LSTM Net-

work is proposed, with on-chip learning, improving the performance, capability and flexibility of

the existing solution of [5]. Moreover, the HDL description of the network is parameterizable,

meaning that to synthesize a network for a given size, we only need to change the appropriate

parameter at synthesis time, therefore requiring no redesign effort whatsoever, unlike [5].

1.4 People Involved

Besides myself, the candidate to the Master’s Degree, there are two more people involved, namely

• Supervisor – The Professor João Canas Ferreira, auxiliary professor at the Faculty of Engi-

neering of the University of Porto.

• Second Supervisor – Ivo Timóteo, MSc, a Computer Science PhD candidate at Cambridge

University, UK, in the field of Artificial Intelligence.

1.5 Overview of the Document

In Chapter 2, the theoretical foundations will be laid out. Section 2.1.1 presents the basic concepts

of Machine Learning, and in the following sections, the theoretical details of ANNs, RNNs and

https://sigarra.up.pt/feup/pt/func_geral.formview?p_codigo=210963
http://www.cl.cam.ac.uk/~ijpdmt2/
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LSTMs. Section 2.1.4.2 provides a quick explanation of the training algorithm that will be used

in the final solution, which will be outlined in Section 4.3.2.

In Chapter 3, the state of the art of LSTMs, their applications (Section 3.1), their hardware

implementations (Section 3.2) and the current work regarding the chosen training algorithm (Sec-

tion 3.3) are presented.

In Chapter 4 the proposed architecture of the hardware LSTM network is explained in detail,

as well as details related to each of its constituent blocks.

Finally, in Chapter 5, I present the results achieved with the hardware network of Chapter 4.
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Chapter 2

Problem Characterization

2.1 Theoretical Background

2.1.1 Basic Concepts of Machine Learning

Machine Learning is a field of Computer Science that studies the development of mathematical

techniques that allow software to learn autonomously, without an explicit description of each rule

of operation. Its goal is to extract latent features from the data that allow an immediate clas-

sification of each input data into a particular class – the catch is that there is no previous rule

formulation, but instead we have an adaptive model that adjusts is parameters according to the

input data it receives, improving the estimates it yields as it receives new input samples.

Let us consider a practical example. For instance, suppose we want to build a program that

given an input audio waveform representation of a spoken word, it matches it into a particular word

of a dictionary. We could, of course, devise a set of rules and exceptions for each word analysing

some of its features (perhaps the Fourier representation of each one, and, from it, manually finding

the appropriate rules for each), but apart from being a very complex task, it wouldn’t be a scalable

solution, given the enormous number of words in each language. The approach taken by Machine

Learning is different, and instead of manually processing each waveform, we build a large dataset,

of size N, containing the waveforms of several words [x1, x2, x2, . . . , xN ] – we call this dataset

the training dataset – and we feed it to our model. Each of the i-th data point was previously

labelled, and in fact we feed each training data point xi along with its corresponding label ti, so

that the model can adapt its parameters accordingly to the target value it is supposed to classify.

This set of labels t = [t1, t2, t3, . . . , tN ] is called the target vector.

We are, then, left with the following question: how can the model quantitatively evaluate

the quality of its current set of parameters? That could be achieved in a number of ways, but

the most usual is using a Cost Function that, as the name suggests, measures the cost of each

wrong classification of the model. The model then evolves in a way that minimizes the cost

function. A usual choice for the cost function is the sum of squares error, given the Gaussian

5



6 Problem Characterization

Noise assumption. Mathematically, if yi
θ
= yθ (xi) is the prediction for the input data point xi with

label ti, given the current set of parameters θ , the cost function using this metric is given by

J(θ) =
1
2

N

∑
i=1

(
yi

θ − ti
)2
. (2.1)

Sometimes, instead of applying the raw data to the model, we can apply some sort of prepro-

cessing to the data to extract the relevant features from it. For instance, instead of just feeding a

raw image, we can perform several operations like edge detection or low-pass filtering, and apply

them in parallel. In cases of highly dimensional data (i.e. each data vector has a very high number

of features), we can apply techniques like Principal Component Analysis to reduce the feature

space to a smaller dimension one, where the previous features were combined into two or three

new features that pose themselves as the most relevant.

The problems described above are, in fact, a subset of the problems that Machine Learning

tries to address. These problems are called classification problems, because for each input data

point, our model tries to fit it into the most appropriate class. But we can also address regression
problems where the output is not limited to a discrete set of values but rather a continuous interval.

On the other hand, the Neural Network that this work will implement addresses a special kind of

classification problem, where the classification decision is influenced not only by the current input

sample, but also by a given window of samples that trail the current sample.

In summary, the most typical setting for a Machine Learning problem is having a large input

dataset which we use to train our model (i.e. allowing him to dynamically adapt its set of parame-

ters θ ), in order to produce an output label yi for each of them that minimizes a quality metric, the

Cost Funcion, which can be chosen to the sum of squared differences, the log-loss, or any other

appropriate mathematical relationship between the estimate yi and the correct label ti.

Now that the basic Machine Learning concepts have been presented, I will discuss, henceforth,

one of the most important algorithms that address the supervised classification problems, the Ar-

tificial Neural Networks that will be discussed in Section 2.1.2 as a contextual introduction to the

main theme of the thesis, which will be Recurrent Neural Networks (Section 2.1.3), namely the

Long Short-Term Memory Networks (Section 2.1.4), both of which are improvements over the

initial formulation of the ANNs. These two last networks branch even further from these set of

problems, and are usually employed in Deep Learning tasks, where we try to extract even higher

level information from data at the expense of increased model complexity.

2.1.2 Artificial Neural Networks

Artificial Neural Networks (ANN) are mathematical structures that, as the name suggests, try to

mimic the basic way of how a human brain works. ANN’s building blocks, like their biological

counterpart, model the high-level behaviour of biological neurons, in the sense that they neglect

unnecessary biological aspects (such as modeling all the voltages across the neuron and all its

electromagnetic interactions), and only retain its fundamental underlying mathematical function,
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which is a weighted linear combination of its inputs subject to a activation function, i.e. a function

that outputs a decision value depending on its inputs. Mathematically, we have

y = f (wT x) (2.2)

where w = [w0 w1 w2 w3 . . . wn] is the input weight vector, x = [x0 x1 x2 x3 . . . xn] the input vec-

tor, b0 is the bias factor and f (·) is the chosen activation function. Furthermore, we call the scalar

quantity a = wT x the activation, since its value determines how the activation function will be-

have. Figure 2.1 exemplifies the roles of these variables within our neuron model, and compares

each part of it with the biological counterpart.

x1

x2

x3

...

xn

b0

f(·) y

w1

w2

w3

wn

1

(a) Neural Network Node
(b) Biological Neuron Diagram

Figure 2.1: In Figure 2.1a. each input feature xi is weighted by its corresponding weight wi. During
the training procedure, these weights are adjusted so that the output y approaches the target value.
In Figure 2.1b, we see the diagram of an actual multi polar neuron. The dendrites, where the
stimuli are received, plays a role similar to that of the input nodes. The axon transmits the signal
to the synaptic terminals, that are similar to the y output. Source: Wikipedia

As far as the activation function is concerned, we can have several types. An immediate choice

would be the Binary Step Function that outputs -1 if the activation is below a given threshold and

1 otherwise. There can also be real valued activation functions, whose output is not binary, but

rather that of a continuously differentiable function, such as the logistic sigmoid σ(a) = 1
1+e−a or

the hyperbolic tangent tanh(a). This aspect will prove useful for the usual training methods, that

involve the computation of derivatives. In Figure 2.2 these activation functions are plotted.

https://en.wikipedia.org/wiki/Neuron#/media/File:Neuron_Hand-tuned.sv://en.wikipedia.org/wiki/Neuron
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−6 −4 −2 0 2 4 6
Activation a

−1.0

−0.5

0.0

0.5

1.0

f(
a)

f (a) = σ(a)

f (a) = tanh(a)
f (a) = sign(a)

Figure 2.2: Three different activation functions. As you can see, the hyperbolic tangent has the
same extreme values as the sign step function, but has a smooth transition between them, which
can be interpreted as a soft decision in the more ambiguous middle region, reflecting the degree of
uncertainty on the decision. On the other hand, the sigmoid function goes from zero to one, and is
also smooth like the hyperbolic tangent.

A neuron by itself can be thought of as a simple linear regression, where we optimize the

weight of each feature according to a target value, or function. While important in some applica-

tions, the main interest in ANN is to evaluate increasingly more complex models, and not a simple

linear regression. This is achieved by chaining nodes to one another, connecting the output of a

given node to one of the inputs of another. We call layers to a group of these nodes that occupy

the same hierarchical position. There can be any number of layers, with any number of nodes, but

most implementations generally have 3 layers: the input layer, the hidden layer (in the middle)

and the output layer. Figure 2.3 suggests a possible structure for a 3 layer ANN.
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x1

x2

x3

f11(·)

f12(·)

f13(·)

f22(·)

f21(·)

f23(·)

f24(·)

fo1(·)

fo2(·)

w1 w2 w3

Figure 2.3: A three layer ANN. We have omitted some of the connections in the hidden layer, for
simplification purposes. w1 represents the weight matrix of the input layer, w2 the weight matrix
of the connections between the input layer and the hidden layer, and w3 the weight connections
between the hidden and the output layer. fi j(. . .) is the activation function of the j-th neuron of
the i-th layer. Since they can be different, I chose different indexes to each.

Regarding the training of ANNs, it is performed through a two-step process: first, a feed-
forward step where the input is applied, and the activations are evaluated in succession up to the

output neurons; then, we perform the backpropagation step, where we calculate the errors in

each of the nodes (the so-called deltas of equation 2.5), but now from the output to the input: the

weights are updated and optimized using an iterative method called Gradient Descent, where if τ

is the current time step, the next update on the weight matrix w(τ+1) is given by

w(τ+1) = w(τ)−η∇E(w(τ)) (2.3)

where E(·) is the error function. As we can see, the weight matrix is moved in the direction that

minimizes the error function the most, and η controls how fast this is achieved, being the reason

why it is called the learning rate.

The computation of gradient of the error function comprises the evaluation of its derivatives

with respect to each weight of all network connections, wi j. They are

∂E
∂w ji

= δ j f (ai) (2.4)
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where f (·) is the activation function of the neuron and

δ j = f ′(a j)∑
k

wk jδk. (2.5)

The interpretation of these equations is simple. If w ji is the weight of the connection between the

neuron j we are considering and a neuron i in a previous layer, then the sum over k relates to all

the neurons in the next layer to which j connects: this way, since the update of w ji, according

to 2.3, is given by

w(τ+1)
ji = w(τ)

ji −η
∂E

∂w ji
(2.6)

we see that, from 2.4 it simply is the product of the error of the current neuron, δ j, with the output

of the previous neuron f (ai). In turn, from 2.5, we see the recurrence relationship between it and

the weighted sum of all posterior neurons that connect to it. Hence, the name backpropagation is

now clear: we are, in fact, propagating the errors backwards into the neuron of interest, weighted

by the corresponding weight, but now backwards instead of forward, as before. For the output

units, the δ j is simply the difference between the produced output and the corresponding label for

that sample. This two-step process is performed for every data point in out dataset. For a complete

proof of the above formulas, see [6, chap. 5.3.1].

2.1.3 Recurrent Neural Networks

A Recurrent Neural Network (RNN) is, essentially, a regular ANN where some neurons (especially

in the hidden layer) have feedback connections to themselves, i.e. their outputs are fed as inputs.

The relevance of this different structure is the possibility to retain sequence information about the

data. Before, each incoming data point only contributed to the training of the network, but the

information about the correlation between themselves and the data points that preceded them did

not influence the training step. Temporal relationship is disregarded and each data point considered

conditionally independent of any other. This is obviously not necessarily true, and in fact there

are many cases where the correlation between data points is high for those closely spaced in time,

such as in video signals, audio signals, or other kinds of temporal sequences of data. Therefore,

the feedback connection of the neuron to himself acts as a kind of memory element that takes into

account in the present decision, the history of decisions previously taken, and hence the previous

data.

Figure 2.4 suggests a possible structure for a neuron of a hidden layer in an RNN, and also an

alternate representation, where the structure is unfold through time.



2.1 Theoretical Background 11

xt

ht

yt

θx

θy

θh

(a) Recurrent Neuron

xt−1

ht−1

yt−1

xt

ht

yt

xt+1

ht+1

yt+1

θx

θy

θx

θy

θx

θy

θh θh θh θh

(b) Recurrent Neuron, unfolded through time

Figure 2.4: In Figure 2.4a, a recurrent neuron is depicted, where the output is fed back to the input,
weighted by θh. Figure 2.4b, an unfolding through time of that same neuron is performed. The
basic idea is that feeding the output back to the input is similar to feeding the output to the input
of the neuron at a previous time step: this way, we linearize the structure. Considering a training
epoch of T samples, corresponds to having T unfolded neurons/layers

The training of an RNN is usually performed using a variation of Backpropagation, called

Backpropagation Through Time (BPTT), that as the name implies, performs the same back-

propagation procedure discussed for the ANNs, but now taking into account the unfolding of the

network through a fixed training epoch T like Figure 2.4b. Due to this very fact, this training

procedure is memory and performance consuming, and so it will not be used in my final work,

but instead a novel approach, the Simultaneous Perturbation Stochastic Approximation will be

evaluated.

Even though RNNs outperform static ANNs in sequence recognition problems [7], they fail

to retain long-term dependencies. Of course that the weight training process is itself a form of

memory, but the problem is that the weight update is much slower than the activations [8], and

therefore this memory only retains short-term dependencies. This is because of the so-called

Vanishing Gradients Problem [9, 8], where the error decays exponentially through time, and

the impact of previous incoming data points on the training of the weights, and thus the current

decision, quickly decreases.

2.1.4 Long Short-Term Memory Networks

To overcome the issue of failing to remember long-term dependencies, Hochreiter and Schmid-

hüber proposed, in 1997, a novel approach to the RNNs called the Long-Short Term Network [4].

This section explains the main idea of this approach (Section 2.1.4.1), and also how it is trained

(Section 2.1.4.2), serving as a support for the work of this thesis. Although originally formulated

in 1997, its formulation has been incrementally updated in [10] and [11], and the most current

version is the one in [1]. One of the inital proposers of LSTM, Prof. Jürgen Schmidhüber, did a

survey on the most common variations of the model last year [2], and this will the basis of this

short theoretical presentation, as well as the work that will be developed in this thesis.
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2.1.4.1 Structure, Operation and Equations

A single LSTM neuron is presented in Figure 2.5. As we can see from the picture, we still have the

recurrent connections from the regular RNNs, but now there are multiple entry points that control

the flow of information through the network. Although omitted from the picture, all the gates

are biased, as is suggested in Equations 2.7. The main components, their role and relevance, are

explained as follows

Figure 2.5: A complete LSTM neuron, with all the features as described in [1]. Source: [2]

• Input Gate – this is the input gate, where the importance of each feature of the input vector

at time t, xt , and the output vector at the previous time step yt−1 is weighed in, producing

an output it .

• Block Input Gate – as the name implies, this gate controls the flow of information from

the input gate to the memory cell. It also receives the input vector and the previous output

vector as inputs, but it does not have peephole connections and its dynamics are controlled

by a different set of weights. The activation function of this gate can be either, but the

most common choice is the Hyperbolic Tangent.

• Forget Gate – its role is to control the contents of the Memory Cell, either to set them or

reset them, using the Hadamard Elementwise matrix multiplication of its output at time t,

c(t), with the contents of the memory unit at the previous time step, c(t−1). The activation

function of this gate is always sigmoid.

• Output Block Gate – this gate has a role very similar to that of the Block Input Gate, but

now it controls the information flow out of the LSTM neuron, namely the activated Memory

Cell output.

• Memory Cell – the cornerstone of the LSTM neuron. This is the memory element of the

neuron, where the previous state is kept, and updated accordingly to the dynamics of the

gates that connect to it. Also, this is where the peephole connections come from.
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• Output Activation – the output of the Memory Cell goes through this activation function

that, as the gate activation function, can be any, but the hyperbolic tangent is the most

common choice.

• Peepholes – direct connections from the memory cell that allow for gates to ‘peep’ at the

states of the memory cell. They were added after the initial 1997 formulation, and their

absence was proven to have a minimal performance impact [2].

After these small conceptual definitions, that allow us to grasp some intuition on the operation

of a single LSTM cell, I can present the overview of a layer of LSTM neurons and their formal

mathematical formulation, that will be needed both for the high-level model and the HDL descrip-

tion. The operation of each set of gates of the layer is given by the following set of equations

z(t) = g(Wzx(t)+Rzy(t−1)+bz)

i(t) = σ(Wix(t)+Riy(t−1)+pi� c(t−1)+bi)

f(t) = σ(W f x(t)+R f y(t−1)+p f � c(t−1)+b f )

o(t) = σ(Wox(t)+Roy(t−1)+po� c(t)+bo)

c(t) = i(t)� z(t)+ f(t)� c(t−1)

y(t) = o(t)�h(z(t)) (2.7)

where � is the Hadamard multiplication. The i-th element of the previous vectors in bold cor-

responds to the value of the gate of the i-th neuron of the layer, which is a very convenient and

compact representation of the whole layer. Furthermore, if the layer has N LSTM neurons and M

inputs (i.e. the size of the layer that precedes this), we see that the input weight matrices W∗ and

the recurrent weight matrices R∗ all have size N×M, and that the bias weight matrices b∗, the

peephole weight matrices p∗ and the matrices z(t) through c(t) have size N×1. Although useful for

a high-level description in a programming language, the matrix representation may not be suitable

for a direct HDL port. In that case, in order to represent the operation of the i-single neuron, all the

above equations still hold, but instead of vectors of outputs, we will have a single scalar output,

and we only use the appropriate row in the weight matrices W∗, R∗ and the remaining.

2.1.4.2 Training – SPSA

Since this work aims to propose an on-chip learning circuit, it is important to find a suitable

learning scheme. Since I am aiming at an hardware implementation, and although the memory

resources of current FPGAs are abundant, one must find an algorithm that uses as less memory

as possible (at the smallest performance cost possible). That being said, we see that the usual

training algorithms for LSTM cells — i.e. Real-Time Recurrent Learning (RTRL), Truncated

Backpropagation Through Time (BPTT) or a mixture of both [1] [4] [2] — usually involve the

storage of the deltas of each layer for every time instant in the training epoch (from 0 to T ), which
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is a highly non-scalable solution both in terms of memory and performance. A most efficient

approach to training times series dependant structures like LSTM is the use of Simultaneous
Perturbation Stochastic Approximation (SPSA) [12]. The main idea of this technique is, instead

of explicitly evaluating the gradients for the cost function at each time step, to perform a random

walk in the neighbourhood of the current weight matrix, in the weight space, and approximate the

new weight update by the approximation of the gradient of the cost function that resulted from

that random walk. The weight update for the i-th weight at the time step t is given by

∆w(t)
i =

J(w(t)+β s(t))− J(w(t))

β s(t)i

(2.8)

where β is the magnitude of the perturbation to be introduced, s(t) is a sign vector whose i-th

element, s(t)i , is either−1 or 1. This way, we see that every weight is randomly incremented either

by−β or β , and we only need to keep a duplicate of the weight matrix with the perturbations, and

we only need to evaluate the cost function twice per incoming sample. As for the update rule, we

have

w(t+1)
i = w(t)

i −η∆w(t)
i (2.9)

where η is the learning rate, and ∆w(t)
i is the update for the i-th weight evaluated in 2.8. According

to the analysis performed in [13], performing a two-term Taylor expansion at w = w(t), and taking

the expected value of the equation, we get that there is a wS1 so that

∆w(t)
i = s(t)i (s(t))T ∂J(w(t))

∂w
+

cs(t)i
2

(s(t))T ∂ 2J(w(t))

∂w2 (s(t)) (2.10)

If the random sign vector s(t) is chosen carefully so that the expected value of the vector at the

i-th position is zero, E(s(t)i ), and the signs of two different components i and j, at different time-

steps, are independent (i.e. E(s(t1)i s(t2)j ) = δi jδt1t2 , where δ is the Kronecker function), taking the

Expected Value of equation 2.10 yields

E(∆w(t)
i ) =

∂J(w(t))

∂w(t)
i

(2.11)

that is, the expected value of the weight update approximates the gradient of the cost function

relative to that weight, and so the learning rule is a special form of Stochastic Gradient Descent.

One last comment to be made concerning the update rule, is the hypothetical need for limits
to the weight values, when the update rule exceeds |wmax| (in that case, we set w(t+1)

i = ±wmax),

which sometimes might be needed if the behaviour of the weight update is not appropriate [13].



Chapter 3

State of the Art

Over the course of this chapter, I am going to present an overview of the most recent developments

related to the work of this thesis, both in terms of existing dedicated hardware implementations 3.2,

the most relevant work in adapting suitable training algorithms to hardware 3.3 and also some of

the most relevant applications of LSTM 3.1, which are not FPGA-based, but demonstrate how

LSTM are useful by themselves, and how well it competes with other Machine Learning algo-

rithms in terms of long time-series dependences in data.

3.1 LSTM Applications (non-FPGA related)

LSTM Networks are nowadays one of the state of the art algorithms in deep-learning, and their

performance is superior to that of other kinds of RNNs and Hidden Markov Models, both of

which are generally used to address the same set of problems where LSTM are employed, namely

predicting and producing classification decisions from time-series data. A very comprehensive

description of applications can be found in one of the initial authors webpage dedicated to the

subject 1. I will now enumerate some of the leading edge applications of LSTM.

• Handwriting Recognition – an LSTM-based network [14], submitted by a team of the

Technische Universität München, won the 2009 ICDAR Handwriting Recognition Contest,

achieving a recognition rate of up to 91% [15]. LSTMs have also proven to surpass HMM-

based models in terms of optical character recognition of printed text, as [16] suggests.

• Speech Recognition – an architecture[17] proposed by Graves et al. in 2013 achieved an

astonishing 17.7% of accuracy on the TIMT Phoneme Recognition Benchmark, which up

to the date is a new record. Furthermore, it has also been used for large scale acoustic

modelling of speech [18].

• Handwriting Synthesis – a comprehensive study by Graves shows, among other sequence

generation tasks such as Text Prediction, that use of LSTM to produce synthetic handwrit-

ing, that looks incredibly similar to human-produced handwriting [19].
1http://people.idsia.ch/ juergen/rnn.html
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• Translation – LSTM was used by Sutskever et al. (Google) to perform sequence-to-

sequence translation on the WMT’14 dataset, translating English to French with a close

to state of the art score [20].

• Biomedical Applications – this network architecture was used in a protein homology detec-

tion scheme [21] using the SCOP 1.53 benchmark dataset, displaying a good performance

when compared to other methods. Similarly, a recent article from 2015 by Sønderby et al.

suggested the use of standalone LSTM and also Convolutional LSTM to perform sub cellu-

lar localization of proteins, given solely their protein sequence, with an astounding accuracy

of 0.902 [22]

• Music Analysis and Composition – Lehner et al. proposed a low-latecy solution based on

LSTM, suitable for real-time detection of a singing voice in music recordings [23] whose

performance surpassed other baseline methods, with lower latency. In terms of music tran-

scription from audio data, there is a study that proposes the use of LSTM cells to perform

a transcription of piano recordings to musical notes [24], in order to automate music tran-

scription. The model was trained with recordings of both acoustic pianos and synthesized

pianos, and the labelling was performed using an associated MIDI file for each piece that

was used in the training, showing promising results. [25] suggests the use of LSTM to per-

form autonomous computer music composition, and Eck and Schmidhüber proposed LSTM

to perform Blues improvisation in [26].

• Video and Image Analysis – Vinyals et al., at Google, proposed an LSTM network for

image captioning, preceded by a Convolutional Neural Network (CNN) to apply prepro-

cessing to the images [27]. The LSTM works as sentence generator, that captions the im-

ages with state of the art performance. Besides image captioning, video captioning is also

an interesting topic. Venugopalan et al. recently proposed a CNN + LSTM architecture to

translate video sequences to natural language [28], using the Microsoft Research Video De-

scription Corpus as a dataset.There are other similar studies that combine image and video

captioning [29].

3.2 Hardware Implementations of LSTM

Hitherto, there is but one actual implementation of an LSTM network in hardware, published

recently (Januray 2016) by Chang et al. [5] in the international Journal of Advanced Research in

Electrical, Electronics and Instrumentation Engineering. It consists on the proposal of an LSTM

network with N = 128 for dedicated hardware, targeting a Xilinx® Zedboard implementation. It

uses a character-level language model from Andrej Karpathy 2, written in Lua using the Torch7

framework 3.

2https://github.com/karpathy/char-rnn
3http://torch.ch/

https://github.com/karpathy/char-rnn
http://torch.ch/
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Although the article is not clear on whether there is active learning by the ARM CPU – the

authors refer that the CPU loads the weights before operation, and that it changes them during

operation, although how and why that change is done is not even clearly explained, neither math-

ematically nor conceptually –, there is no on-chip learning module in the FPGA according to

the description provided. For that reason, the system stores the weights in external memory, and

accesses them using Direct Memory Access (DMA). Furthermore, the level of parallelism is low,

since for an N = 128 network, the design uses only 22.73% of the DSP48’s available in the board.

This is because the matrix multiplications are serialized, and only one DSP is used for each matrix-

vector product (aside from other uses).

The implementation is not flexible, since there is nothing that suggests a parameterization of

the HDL description. Hence, it is only possible to synthesize networks of size N = 128, meaning

that there needs to be a redesign of the network for other network sizes. On the other hand, this

is a valid approach for special applications that require networks of this size, and where we only

need a co-processor for LSTM networks, and not a dedicated standalone system.

3.3 Training Algorithms and Implementation

As stated in 3.2, the work of [5] does not feature on-chip learning at FPGA level, although there

are a handful proposed solutions for it in recent literature. I will particularly look into the ones

that use SPSA (see Section 2.1.4.2), since that is the training algorithm of choice for my proposed

solution, and also to the ones that particularly apply SPSA to the training of Neural Networks [13].

The SPSA algorithm was initially published by Spall in [12], and its theoretical details, are

outlined in Section 2.1.4.2. As to its applications to the training of general Neural Networks,

the earliest examples come from 1995 and 1996 in [30, 31] where SPSA is used to train a VLSI

Analog Neural Networks, a time where the memory resources of digital circuitry were limited,

and so most of these structures were analog-based. Its adequacy was also established for control
problems, such as those proposed in [32], where a Time Delay Neural Network is used to control

an unknown plant in a linear feedback system.

In 2005, Maeda and Wakamura published a proposed SPSA hardware implementation [13] to

train an Hopfield Neural Network in an FPGA (and thus a digital system), achieving promising re-

sults in an Altera FPGA. The article carefully delineates the approach taken, and also the hardware

architecture designed.

Furthermore, a 2013 article by Tavear et al. [33] proposes, for the first time, using SPSA to

train LSTM Neurons, although the article focuses on proving the suitability of SPSA to LSTM,

and no actual hardware implementation is done or proposed. The authors simply demonstrate

the suitability using conceptual arguments and by building a software model of an SPSA-trained

LSTM network, and by comparing both the performance and computing speed of their model with

the results achieved by Hochreiter et al. in [21]. Since the forward phase in both regular LSTM and

SPSA-trained LSTM is the same, the computation time suffers no performance penalty whatsoever
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and the learning ability is preserved to a high degree, showing that SPSA is a valid alternative do

BPTT and other similar and more common training schemes.

3.4 Final Overview

As we could attest from this small literature survey, although there is already an hardware imple-

mentation of LSTM, there is still a good deal of room for improvement by adding on chip-learning

to the system, and also to improve its performance and flexibility. Furthermore, [33] shows that,

at least for that particular case, the LSTM network doesn’t suffer a great performance impact

from using SPSA training, as opposed to the more common BPTT, and [13] showed that an SPSA

hardware implementation is feasible.



Chapter 4

Proposed Architecture

4.1 Constituent Modules

4.1.1 Finite-precision representation system

Before discussing any other details concerned with the actual hardware implementation, some of

the design choices that were made regarding how the numbers involved in the calculations are rep-

resented are laid out. For that purpose, Section 4.1.1.1 discusses the fundamentals of fixed-point

representation systems, as well as the bitwidth and precision chosen for the number representation

system of the network, and Section 4.1.1.2 states how the conversion between real and fixed-point

numbers is performed. Finally, Section 4.1.1.3 explains the special rules that fixed-point arith-

metic imposes. The considerations made in this chapter can be found on [34], which is a good

reference for fixed-point arithmetic theory.

4.1.1.1 Precision bitwidth

Since we are dealing with real numbers, and the plan is to make use of the DSP48 slices within

the FPGA, an 18-bit signed fixed-point system was chosen, with the sign information coded as 2’s

complement. Fixed-point systems are usually addressed in the Qn.m form, where n is the bitwidth

of the of the integer part (excluding the sign bit) and m is the bitwidth of the fractional part, and

so the total bitwidth is N = m+n+1 to account for the sign bit. In this way, the value of the i-th

position bit is 2i−m, and since this is a 2’s complement system, the last bit is worth−2n−1. In terms

of range of representation, the maximum positive number that can be represented corresponds to

all bits set to one, except for the last (2n+m+1− 1), but shifted by m bits to the right to yield the

correct real number (the decimal point is at the m-th bit), i.e.

Max. Positive Number =
2N−1−1

2m = 2N−1−m− 1
2m (4.1)

and the smallest negative number is simply the MSB set to one (and also shifted appropriately),

Small. Negative Number =−2N−1

2m =−2N−1−m. (4.2)

19
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Assuming that the smallest perturbation used in the training system will be 2−9, according to

the previous Python experiments, the fractional part precision should be, at least, greater than this,

so a sensible choice would be either m= 10 or m= 11. On the other hand, given that, in the Python

experiments, it was attested that the weight values generally do not (and should not) exceed values

around the first power of ten, there is no need for large values of n (although it is advisable to be

large enough to accommodate the intermediate calculations, avoiding overflow), and so we should

choose to have as much precision as possible, so m was set to 11. Since 18 = n+m+ 1, then

n = 17−m = 6 and the representation system to be used is Q6.11. According to Equations 4.1

and 4.2, the real values x than can be represented with this choice of n and m are in the range

−64≤ x≤ 63.99951172 (4.3)

with a minimum resolution of 2−11 = 0.00048828125.

4.1.1.2 Conversion between real and fixed-point

In order to find the real number equivalent of a Qn.m fixed-point system, and vice-versa, we need

to take into account that, according to Section 4.1.1.1, the i-th position bit is worth 2i−m, and

therefore the decimal point in this fixed-point system is at position i = m, since 2m−m = 1. This

way, the rules are as follows

• Positive Real to Qn.m – since the 1 is at bit m, we simply multiply the real number by 2m,

and discard the fractional part of the result

• Negative Real to Qn.m – we disregard the sign in the real number, and perform the same

operation as before, but we then convert the resulting binary number to two’s complement,

i.e. by performing bitwise negation, followed by summing 1.

• Positive Qn.m to real – multiply the fixed-point number by 2−m, to shift the decimal point

back by m positions.

• Negative Qn.m to real – convert from two’s complement by performing bitwise logic nega-

tion, followed by summing one; then scale the decimal point back by m positions by multi-

plying by 2−m.

4.1.1.3 Fixed-point arithmetic rules

The three main operations needed in my network design are signed sums, signed multiplications
and arithmetic shifts (i.e. the ones that preserve the sign of the MSB) to implement divisions/-

multiplications by powers of two. In terms of signed sums, the rule is simple: both numbers need

to be scaled to the same base, with their m’s being same, so that the decimal point is in the same

place in both numbers (n, however, can be different, since that only means that one number is

longer than the other, and the missing bits in the smaller one are interpreted as zeros).
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For signed multiplication, since both operands are in fixed-point Qn.m, and are thus scaled by

2m, we need to scale the result by multiplying it by 2−m (or perform an arithmetic right shift of m

bits). This is because, if a and b are the real numbers to be multiplied, and c is the result, we have

that, in fixed-point arithmetic, the result is

(a ·2m) · (b ·2m) = c ·22m. (4.4)

Since in Qn.m, all numbers are represented as r2m with respect to their real counterpart r, we need

to scale back the decimal point in the result of Equation 4.4. We can see that it can be easily

achieved by dividing by 2m, as stated in the previous paragraph.

4.1.2 Activation Function Calculator

In order to evaluate the non-linear activation functions σ(x) and tanh(x), since there is no algo-

rithm that can directly compute them, a suitable way to compute them accurately had to be found,

using a finite number of elementary operations, multiplications and additions, that can be per-

formed efficiently by specially tailored blocks within the FPGA (DSP48 slices for multiplication,

for instance). For that purpose, after using [35] as a reference on elementary function approxima-

tion algorithms, Polynomial Approximations were used, since evaluating a polynomial does not

have high memory usage needs (as opposed to Table Methods, for instance) and, if the polyno-

mial degree is sufficiently low, the number of multiplications needed is low enough to not pose a

restriction both on resources (now DSP slices, and not memory) and in speed (number of number

of clock cycles needed to output a result).

4.1.2.1 Theoretical considerations on the approximation method

The polynomial approximation methods aim to approximate some function f (x) in an interval

[a,b] using a polynomial p∗n ∈P of degree n, in order to meet the optimization criteria chosen

a priori. This optimization criteria can be either the well-known Least Squares Approximation
procedure, where we minimize the average quadratic error [ f (x)− p∗(x)]2, or the Least Max-
imum Approximation, where we minimize the maximum possible error, also commonly called

a minimax approximation. Since we are operating in Q6.11 fixed-point arithmetic, we need to

guarantee that the maximum approximation error is close to the precision limit of this represen-

tation, 2−11, and so a minimax approach is desirable, since it guarantees that a given maximum

error is not exceeded. Weierstrass’s Theorem guarantees that there is always a polynomial that can

approximate any continuous function f with error ε > 0. Chebyshev also proved [35] that, in a

minimax polynomial approximation of degree n, the minimum approximation error ε is achieved

in at least n+2 points, and the sign of the approximation error alternates from one interval to the
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other, meaning that the error is not biased and has zero average. This leads to a linear system of

n+2 equations, whose i-th line is given by

p(xi)− f (xi) = (−1)n+1
ε ⇔ p0 + p1xi + p2x2

i + · · ·+ pnxn
i − f (xi) = (−1)n+1

ε (4.5)

The optimal coefficients of this minimax polynomial are found using the Remez Algorithm,

which provides an iterative approach to solve the linear system given by Equation 4.5 by finding,

in each iteration, the n+2 set of points xi of Chebyshev’s Theorem that minimize the error function

to ε . The algorithm operations are as follows

1. Initializing the set xi of points to xi =
a+b

2 + (b−a)
2 cos

( iπ
n+1

)
, 0≤ i≤ n+1

2. Solve the system in 4.5

3. Given the polynomial coefficients yielded by step 2, compute the yi points that minimize

p(x)− f (x), and replace the xis of the next iteration by these yis. Go to step 2 until ε does

not decrease.

On one hand, the system of 4.5 of Step 2 can be written in matrix notation as


1 x0 x2

0 · · · xn
0 −1

1 x1 x2
1 · · · xn

1 +1
...

1 xn+1 x2
n+1 · · · xn

n+1 (−1)n+1





p0

p1

p2
...

pn

ε


=


f (x0)

f (x1)
...

f (xn+1)

 (4.6)

and therefore the solution vector p= [p0 p1 p2 · · · pn ε] for Step 2 of Remez’s Algorithm is simply

given by p = A−1b, where A is the matrix on the left-hand side of the equation and b is the vector

on the right-hand side. The Python implementation of this algorithm is presented in Listing A.1

of Appendix A.

Instead of using a single polynomial of higher degree (n≥ 3) for the whole domain, the domain

of the activation functions was partitioned in 6 intervals, and polynomials of degree n = 2 were

used to approximate the function in each of those intervals. This proved to yield a lower overall

approximation error, as expected (the interval on which to perform the approximation is smaller).

Also, since both σ(x) and tanh(x) have horizontal asymptotes in {0,1} and {−1,1} respectively,

the far-left and far-right intervals do not need a polynomial approximation, and can be assigned
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a constant value equal to the corresponding asymptote. The resulting minimax approximation

polynomials yielded by running the code in Listing A.1 are

σ(x)≈



0 x≤−6

0.20323428+0.0717631x+0.00642858x2 −6≤ x≤−3

0.50195831+0.27269294x+0.04059181x2 −3≤ x≤ 0

0.49805785+0.27266221x−0.04058115x2 0≤ x≤ 3

0.7967568+0.07175359x−0.00642671x2 3≤ x≤ 6

1 x > 6

(4.7)

for the sigmoid function and

tanh(x)≈



−1 x≤−3

−0.39814608+0.46527859x+0.09007576x2 −3≤ x≤−1

0.0031444+1.08381219x+0.31592922x2 −1≤ x≤ 0

−0.00349517+1.08538355x−0.31676793x2 0≤ x≤ 1

0.39878032+0.46509003x−0.09013554x2 1≤ x≤ 3

1 x > 3

(4.8)

for the hyperbolic tangent function. These constants were converted to Qn.m using the rules

in 4.1.1.2, and embedded in the HDL model.

4.1.2.2 Hardware Implementation

The hardware module that implements these activation functions is, essentially, a 2nd degree poly-

nomial calculator, where the coefficients of the polynomial are chosen accordingly with the value

of the input x. This last functionality is implemented using a simple multiplexer that loads the

signals p0, p1 and p2 with the coefficients of Equations 4.7 and 4.8 based on the value of the input

operand x. As for the polynomial calculator is concerned, although we could use a full-pipelined

evaluator, that would require two DSP slices – to perform the two simultaneous multiplications –

but the DSP slices will be heavily used in the matrix-vector calculators, so it is advisable to save

them for that purpose. A simpler approach is to note that, according to Horner’s Rule, we get

p(x) = p0 + p1x+ p2x2 = p0 + x(p1 + xp2) (4.9)

where we can note that this operation can be divided in a two-step procedure of a simultaneous

multiplication of the operand by a constant, and a subsequent addition of another constant: first, by

multiplying the operand by p2 and summing p1, and then by multiplying the operand by this last

result and summing p0. The block diagram of the hardware implementation of the non-linearity

calculator is presented in Figure 4.1. Also, in Figure 4.2, the output of the Verilog module that

implements this design is compared with the actual output (Python3’s Numpy was used as refer-

ence) for both activation functions. The maximum error for the approximation of the σ(x) was of

0.001408 and for the tanh(x) was 0.0121.
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Figure 4.1: Block Diagram of the Activation Function Calculator using a single multiplication.
The multiplexer state is controlled by the flip-flip and sum block, that change state every clock
cycle. When reset is applied, the selector is set to zero.
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Figure 4.2: The output of the HDL implementation of the activation functions
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4.1.3 Matrix-vector Dot Product Unit

From the set of Equations 2.7, we see that the weight matrices W∗ and R∗ are multiplied by the

input vector x and the layer output vector y, respectively. This way, we need an HDL block that

implements matrix-vector multiplication, and the description of that block must be parameterized

in order to accommodate different matrices/vectors of various sizes: note that x has length M (the

number of inputs to the layer), and so W∗ has size N×M, while y has length N (the number of

neurons in the layer), and so R∗ now has size N×N. Plus, a layer with different parameters is

needed, either in terms of number of inputs or number of neurons, it is advisable to only change

the respective parameter at the synthesis stage, instead of having to redesign the whole block for

that particular size.

The matrix-vector dot product of a matrix A of size N ×M with a vector x of size M, if

performed in a linear non-parallel way, can be described in terms of Algorithm 1

Algorithm 1 Matrix-vector multiplication of a matrix
for i = 1 : N do

for j = 1 : M do
yi := yi +Ai j · x j

end for
end for

This operation has a computational complexity of O(n2). It can be seen that each of the

i-th components of the output vector y can be calculated in parallel, each only requiring the

corresponding i-th line from the matrix. Following this approach, matrix-vector multiplication

can now be performed in linear time, which is one of the great advantages of custom-tailored

hardware solutions.

Although this solution only requires one multiplication per row of the input matrix (i.e. N

multiplications), if the row size is large, we may quickly run out of resources in the FPGA as N

increases; therefore, some sort of resource multiplexing strategy must be used to ensure the flexi-

bility of the solution to accommodate networks of larger dimensions. The solution found for this

issue was to share the multiplication slice between rows of the matrix: in a direct implementation

of Algorithm 1, each multiplication slice was responsible for producing the i-th element of the out-

put vector y (of size N), therefore the final result for the vector would be ready in M clock cycles

(i.e. the number of columns); now, if defining a parameter KG = Number of rows
Number of multipliers , the number

of rows that share the same multiplier, each multiplier is responsible for producing several i-th

elements of the output vector, in consecutive time slots of M clock cycles. Suppose that we have

a 8× 2 matrix, and that KG = 2; in this way, we would have 4 multipliers, and the output vector

elements y0, y2, y4 and y6 would be ready after M = 2 clock cycles, and the remaining – y1, y3, y5

and y7 – are ready after another two clock cycles, that is 2M = 4 clock cycles after the calculations

began.

Figures-4.3 and 4.4 depict a diagram of the memory access for the Matrix, and the row mul-

tiplication units within the module, respectively, where KG = 4 was set, for the same matrix and
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rowMux = 2
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Figure 4.3: A column of the matrix that serves as input to the module. The dark shaded part is for
the first multiplier, and the light shaded is for the other, in parallel. The rowMux signal addresses
the position within each shaded area

.

vector sizes as before. Note that in this situation there would be only 2 multipliers, and therefore

the module would be composed of two multiplication units, such as those in Figure 4.4, that work

in parallel: they address a particular column using the signal colSel, which is used by the RAM

module to output the corresponding column of the matrix (in regard to the input vector, obviously

this signal selects only a single position), depicted in Figure 4.3. The dark shaded part of the

memory is used by the first multiplier, and the light shaded is used by the other, in parallel for a

fixed rowMux – this signal is produced by the control unit of the module, and essentially operates

the left Mux and right Demux of Figure 4.4 that allows to choose the proper position of the weight

column and to write to the correct output register, respectively. In this example, for rowMux=0, the

control unit increments colSel from 0 to M, and thus evaluating y0 and y4. After this, rowMux

is incremented to 1, and the process repeats until rowMux reaches KG−1. Therefore, we have the

correct result vector in a time proportional to KG ·M: since the memory only outputs the appro-

priate column in the next clock cycle, and that this module is pipelined both at the input and at the

output in order to increase the maximum clock frequency, we should add a 3 clock cycle overhead

to the previous estimate.

4.1.4 Dual-port weight RAM

Even though bias weight vectors, with size N×1, were kept as normal registers and the synthesis

tool was left to decide how to place them in the FPGA, for the weight matrices the case is different.

Since the network size can be large, it is good to make sure that they are placed in the RAMs
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Figure 4.4: The i-th row multiplication unit of the Module, where rowMux and colSel are internal
signals produced by the control unit of the module. The flip-flop accumulates the sum, and the
output Demux selects the appropriate memory position on where to store this value, within the slot
attributed to this multiplication, from i ·KG to i ·KG +[KG−1]

available in the FPGA. In Section 4.1.3 we see that, because of the architecture of the matrix-

vector multiplier, it is convenient to have a column by column access to the weight matrix, and

therefore this block was designed to output a given column in the rowOut output port terminal,

at the positive edge of the clock, selected by the value present in the input addressOut at the

immediately previous positive edge of the clock. As far as writing to the memory is concerned,

the process is identical but now the column of weights at the input rowIn is sampled at positive

edge of the clock, and is placed at the column specified by the input addressIn at the previous

positive edge of the clock.

Note that, for an N×M matrix, since the memory outputs and writes one column at a time, both

the input and output port terminals will carry N weights, and a total bitwidth of BITWIDTH ·N.

The Verilog coding followed the Verilog Coding Guidelines in Xilinx’s UG901 Document

that, in page 50, recommends that the RAM_STYLE parameter be set to block. This can be done

by adding the following compiler directive before the register definition, as follows

(* ram_style = "block" *) reg [PORT_BITWIDTH-1:0] RAM_matrix [NCOL-1:0];

where we can see that each register contains the respective column of the matrix, with PORT_BITWIDTH=

BITWDITH ·M and NCOL= M.

After performing synthesis, it was noticed that using block RAM led to a slightly poorer speed

performance, so I have settled with the use of Distributed RAM, storing the weight matrices in

LUTRAM.

4.1.5 Gate Module

The Gate modules are responsible for producing the internal signal vectors for z(t), i(t), f(t) and o(t).
If we note that, according to [2], the removal of peepholes (the signals p∗) does not compromise

significantly the performance of the network 2.1.4.1, they were omitted in order to simplify the

Gate Module and reduce the usage of DSP slices. This way, a Gate module needs to perform three

tasks

1. Multiply matrix W∗ by the input vector x(t)

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2015_2/ug901-vivado-synthesis.pdf
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Figure 4.5: Diagram of the hardware block that implements the Gate

2. Multiply matrix R∗ by the previous layer output vector y(t−1)

3. Sum the bias vector b∗ to the remaining matrix-vector dot product results.

Assuming that the network size N is always larger than the input size M, if we use the matrix-

vector dot product units of Section 4.1.3, the multiplication in task 1 takes approximately KG ·M
cycles and the one in task 2 takes KG ·N cycles. This way, task 2 and task 1 can be performed

in parallel, and we can use the extra time that task 2 takes, relative to task 1, to perform task 3,

and sum the bias vector to the output of task 1, whose result is ready by that time. The module

is triggered by a beginCalc input signal that activates the internal state machine, and outputs a

dataReady signal that informs the network that the calculations have been concluded, and the

value at the output is the actual final result. After validating and simulating this block, and taking

into account the internal state-machine and that the internal datapath is pipelined, the exact number

of clock cycles this module takes to output a result is 6+KG ·N.

4.2 Hardware LSTM Network – Forward Propagation

After detailing the design of each of the constituent modules of the LSTM Network, it will now

be shown how they are interconnected to implement a hardware version of Equations 2.7. This

is performed in Section 4.2.1, where the design decisions and compromises that were taken are

detailed, along with some estimates on the resource usage and calculation time for each of the

design iteration versions, namely the naïve solution ( 4.2.1.1) and an optimized version of the

former ( 4.2.1.2) that exploits some of the hardware redundancies by multiplexing in time the

usage of those redundant structures.

4.2.1 Network Structure

Looking at Equations 2.7, we note that the signals z(t), i(t), f(t) and o(t) do not depend on each

other, because they operate only on the current input vector x(t) and the previous layer output

y(t−1). This way, they can be calculated in parallel, meaning that we need four Gate Modules (see
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Section 4.1.5 working in parallel, each one with its respective two RAMs for W∗ and R∗, and

followed by the respective activation function calculator (detailed in Section 4.1.2), one for each
of the N vector elements. There are three elementwise multiplications, two for producing signal

c(t) (which can be done in parallel and then summed elementwise) and one for y(t) (which can be

done only after applying the activation function c(t)).

4.2.1.1 Fully Parallel

By implementing directly the ideas outlined previously, we get the network of Figure 4.6. The

memory element of the network is the array of flip-flops that keep the value of the vector c(t),
which is activated every time we have a new incoming signal in order to store the last value, which

is now c(t)

In terms of DSP slice usage, this proposed design comprises 3 elementwise multiplications

and 5 activation function Modules. Since the number of elementwise multiplications is equal to

the network size N, we need 3N DSP slices for each elementwise block. As far as the activation

function module is concerned, since we need to apply it to each one of the N elements of the Gate’s

output vectors, and each module uses one multiplication, the ensemble of all 5 modules needs 5N

DSP slices. Therefore, and noting that each Gate has 2N
KG

DSP slices, the total number of DSP

slices used is

4
2N
KG

+5N +3N = N
(

8
KG

+8
)
. (4.10)

In terms of time performance, we can measure it by estimating the number of clock cycles needed

to perform a complete forward propagation. Since the gate module outputs a result in KG ·N + 7

cycles, the activation function evaluators need always 5, and the elementwise multipliers need only

2 cycles (one cycle for the pipeline, and another for the actual calculation), and noting that the two

elementwise multipliers that sum to produce c(t) can work in parallel, the estimated number of

clock cycles needed would be proportional to

(N ·KG +6)+(5+2)+(5+2) = 20+N ·KG (4.11)

4.2.1.2 Shared Elementwise Multiplication Block

In Figure 4.6, we see that, apart from the elementwise multiplier preceding the register, all of them

follow a similar structure: one of the operands is the output of a tanh(x) block and the other from a

σ(x). An improvement over the last network architecture is to, instead of replicating these ‘tanh-

σ -(·)wise’ structures, use a single one and choose the input operands accordingly to the state that

the network is currently in. Besides, the right elementwise multiplier of Figure 4.6 is not used as

the same time as any other, so it is a waste of resources. The issue about the elementwise multiplier

that precedes the register can be solved by adding another multiplexer that chooses between the
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Figure 4.6: Hardware LSTM Network with full level of parallelism

output of the tanh(x) module or the signal c(t−1). These ideas resulted in the improved network

design of Figure 4.7.

The two left multiplexers control the operands that are fed to the activation function modules,

and the selecting signal is generated by the network’s state machine and its value is incremented

after each complete usage of the ‘tanh-σ -(·)wise’ structure: this is where the time multiplexing

of the structure takes place. Since in state Sel= 1 the left operand of the elementwise multiplier

(the one that preceded the register in the previous design) is the signal c(t−1), another multiplexer

was added before the elementwise multiplication, that selects that signal in that particular case,

and the output from the tanh(x) block otherwise.

The registers on the right hand side of Figure 4.7 are activated by signals generated within the

network state machine that enable the appropriate register, placing the output from the elementwise

multiplicator in the correct place. The first activated register is the middle one, which keeps the

result from the operation of the z(t) and i(t) vectors, then, after a full operation of the elementwise

multiplier, the bottom register is enabled to save the other portion of the sum that evaluates to

the c(t) signal. Lastly, the top register saves the network output y(t), which in the next incoming
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Figure 4.7: Optimised version of 4.6 that shares the elementwise multiplication and the activation
function blocks
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sample becomes y(t−1) and is used by the Gate modules in this next batch of calculations.

Now, since there is only a single elementwise multiplier and only two activation function

calculators, the total requirement for DSP slices is simply

4
2N
KG

+2N +N = N
(

8
KG

+3
)
. (4.12)

where we see that we saved 5N multipliers when comparing to the previous design, which for a

large value of N can have a decisive impact. In terms of speed performance, although the Gate

calculation time remains the same, now the ‘tanh-σ -(·)wise’ structure runs for 3 consecutive times,

in a non parallel fashion. After adjustments to the state machine, and accounting for pipelining

and synchronization within the datapath, the clock cycles needed after the gate calculations are 27,

so the total clock cycles needed are

(N ·KG +6)+27 = 33+N ·KG (4.13)

which is only 13 clock cycles more than the fully-parallel architecture. For instance, an N =

32 neuron network using the fully-parallel design would require 320 DSP slices, while this new

architecture would only require 160. Only at the expense of 13 clock cycle overhead.

4.3 Hardware LSTM Network – SPSA Training

In this section, a digital circuit is proposed that aims to train the Network whose details were

explained in the previous Section by implementing the training algorithm of Section 2.1.4.2. The

training consists in changing the weight values in the RAMs accordingly with the error of the

current prediction against the correct outcome. This involves two forward propagations: one,

where we run the network with the weights unchanged, and another where we perturbate the

weights by a parameter ±β (the actual sign for each weight is generated at the beginning of the

first forward propagation). After these two forward propagations, there is a small time frame

where the weights are updated, row by row, before the next incoming sample. This is explained

in Section 4.3.2. The way how the numbers are randomly generated in hardware is presented in

Section 4.3.1.

4.3.1 Pseudo-random Number Generator

While a True Random Number Generator (TRNG) generates data from a physical entropy source,

a Pseudo-random Number Generator (PRNG) generates a sequence of numbers by applying a

given function, consecutively, to an initial seed. This means that, if one knows that initial seed

and the function that generates the sequence, one can predict the previous and future numbers

given the current state. While this is not acceptable for high security cryptographic systems, it

serves the purpose of providing a sequence of random sign vectors (from whom both the signal

of the perturbation and the update will be chosen from). The remaining issue is to find a PRNG
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Figure 4.8: The 32 bit Pseudo-random Number Generator. Source [3]

with good statistical qualities, so instead of implementing a simple linear-feedback shift register

(LFSR), I did some research on the topic, and eventually chose the solution of [3], based on a 43-

bit LFSR and a 37-bit Cellular Automata, by selecting 32 bits from each, permuting the bits and

performing a bitwise XOR – the output has, also, 32 bits. The quality of the statistical properties

are guaranteed, since it passed the DIEHARD test battery, as well as others, according to [3].

The generator polynomial of the LFSR is a maximal length polynomial, x43+x41+x20+x+1,

and thus has a period equal to 243−1. The CA is also a register, but each bit is updated according

to a given rule based on the values of the neighboring bits. This particular CA follows Rule 150

for the bit in position i = 27, given by ct+1(i) = ct(i−1)+ct(i)+ct(i+1), and the remaining bits

are updated by Rule 90, given by ct+1(i) = ct(i−1)+ ct(i+1). The bits positioned at the borders

also follow rule 90, but treat as zeros the non-existing i positions.

The output of the hardware implementation of this PRNG is presented in Figure 4.9. It is a

state-time diagram, where the contents of the registers at each time are represented by black (ones)

and white (zeros). Tthe left column represents the output of the LFSR, the center column is the

output of the Cellular Automata and the right column is their combined output. As one can see,

the time dependence of the LFSR is very high, which is not desirable. The Cellular Automata,

although uncorrelated, still retains some of the patterns that emerge from CAs. On the other hand,

the combined output is the one that most resembles white noise, which is a desirable characteristic.

4.3.2 Training Algorithm Circuit

Here is presented the proposed digital circuit of the SPSA training for the network. The circuit of

Figure 4.10 is replicated for each of the eight weight RAMs, and the Sign RAM holds a single bit

for each of the weight positions of the weight RAMs. This bit keeps the sign of the perturbation

to be applied to that particular weight, both on the second forward propagation and on the training

stage. During the first forward propagation, and since the weights are not perturbed in this run,
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Figure 4.9: The output of the implementation of the presented PRNG (right). The LFSR is the left
column, and the CA is at the center. The zeros are represented by white, and the ones by black
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we can use this time to populate the sign RAMs with new values for the next training stage,

coming from the PRNG of Section 4.3.1. For this purpose, the PRNG is activated by the signal

genRandNum, generated by the state machine, and we write columns of bits to the sign RAM, re-

using the addressing signal produced by the Gate, namely colAddressRead (weightUpdate

is set to zero at this stage). At the second forward propagation, pertWeights is set to one, and

the Perturbation Mux selects the input where the weights are summed with the perturbation β ,

whose sign is selected by the sign RAM.

After this stage is completed, and before the network starts a new training cycle for the new

incoming sample, we perform the actual training. For that purpose, weightUpdate is set to

one, and we enable writing to the Weight RAM. Also, the machine state is now responsible for

addressing both RAMs, and we begin a simultaneous pipelined write to the Weight RAM: this is

done by delaying the Write address in respect to the Read address by one clock cycle. This way, at

the first clock cycle, while we read Column 0, the next clock cycle will read Column 1 and write

the sign-changed column 0 plus the update coming from the difference between the outputs in the

two forward propagations. In order to simplify the update rule of Equation 2.9, α and β were fixed

to negative powers of two, and this replaces the multiplication and division by a simple arithmetic

right shift – this idea is also proposed by [13] – considerably simplifying the design.
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Chapter 5

Results

The optimized design of Section 4.2.1.2 was synthesized for different network parameters, using

Xilinx’s Vivado 2015.4 Design Suite, and the synthesis results are reported in Section 5.1, along

with their discussion. The performance of the synthesized networks is very promising, showing

an approximate 251× speed-up over the LSTM Python model, which was running on a high-end

desktop computer with an overclocked CPU, and a 14× speed-up over the most recent hardware

implementation [5] Although the FPGA aims for an Embedded System environment usage, the

fairness of the comparison with a Desktop computer still holds, since a Python/Numpy imple-

mentation is slower than a lower-level language implementation (such as in C) and this level of

performance would be similar to a C implementation in a low-power, embedded CPU platform.

These results are reported in Section 5.2.

5.1 Synthesis

The proposed network was first synthesized aiming a Xilinx XC7Z020 SoC, for sizes N of 4, 8, 16

and 32, varying the resource sharing parameter KG, and the number of inputs set to M = 2. For a

network size of 32 and KG = 8, the LUT usage exceeded the LUT resources available in the FPGA,

so only lower values of KG were successfully synthesized. This is because of the complexity of

the input multiplexer of the Matrix-vector Dot Product Module in 4.1.3. To synthesize the design

for sizes N of 64, 128 and 256, a Virtex-7 VC707 board was used.

In order to assess the impact of the network size on the performance and resource usage of

the proposed design, the Verilog description of the proposed network was first synthesized aiming

a Xilinx XC7Z020 SoC platform, for sizes N ∈ {4,8,16,32}, and for each of these the resource

sharing parameter KG was also varied (as will be explained further ahead, the number of inputs

is set to M = 2). Since performance is the key factor for using an FPGA implementation, the

synthesis strategy used was the Flow_PerfOptimized_high, and the implementation strategy

was Performance_ExplorePostRoutePhysOpt to perform a post-route optimization stage

that proved useful in many cases to meet the clock specifications when the first Place&Route pass

failed to meet them. For a network size of 32 and KG = 8, the LUT usage exceeded the LUT
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resources available in the FPGA, so only lower values of KG were successfully synthesized (N.D.

in the tables). Networks of sizes N ∈ {64,128} were also synthesized for a Virtex-7 VC707 board.

5.1.1 Maximum Frequency

Using the synthesis strategy outlined in the previous paragraph, the maximum clock frequency that

does not cause timing violations of any sort is plotted in Figure 5.1. For N = 4, since there are only

4 rows to be multiplied, the maximum value of KG is 4, and hence no synthesis was performed for

KG = 8 (N.A. in the tables); also, since KG = 2 and N = 32 would use 32(8/2+ 3) = 224 DSP

slices, that exceeds the 220 slices available in the Zynq 7020, so there is no synthesis data for that

value.

First, for all network sizes, it is clear that with increasing KG, the maximum clock speed

decreases. This means that there is a critical path in the Matrix-Vector multiplication unit, whose

multiplexer becomes increasingly complex for higher values of KG. On the other hand, when KG

is the same, smaller networks are faster than larger networks. The fastest design is an N = 4 and

KG = 2 network, with a clock frequency of 158.228 MHz, and the slowest one is an N = 32 and

KG = 4 network, clocked at 101.523 MHz. The reference design used for validation in Section 5.2

is an N = 8 and KG = 2 network is clocked at 154.321 MHz, which yields a clock period of 6.48

ns.

5.1.2 DSP Slices Usage

The estimates made in Equation 4.12 were proven to be accurate, as Figure 5.2 confirms. The

reference network design uses 56 DSP slices, which corresponds to 25.45% of the total number of

DSP slices available.

5.1.3 Power Consumption

Another important metric of the performance of a design is its power consumption. All designs

yielded a constant baseline value for the static power consumption of around 120 mW, and the

power consumption reported in Figure 5.3 refers to the total power consumptions, i.e. both the

baseline static power and the dynamic power consumption. It is clear that the smaller the network

is, the less power is consumed, as one would expect. Furthermore, an increasing level of resource

sharing, KG, yields a substantially lower power consumption figure: this is because less DSP slices

are used when KG is increased. Of course, even though the power consumption is lower in that

case, that comes at the expense of a lower clock frequency and a higher computation overhead per

forward propagation.

5.1.4 Other Resources Usage

The LUT, LUTRAM and Flip-Flop usages are discussed here. In Table 5.1, the usage of LUTs is

reported, where we can see that although there is not a clear trend on how the LUT usage varies
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KG = 2 KG = 4 KG = 8
N = 4 6.87% 6.04% N.A.
N = 8 14.64% 13.03% 14.11%
N = 16 28.97% 27.72% 29.85%
N = 32 N.A. 91.09% N.D.

Table 5.1: LUT usage for different N and KG in the XC7Z020

with increasing KG, it is clear, and expectable, that the LUT usage increases with the size of the

network by an approximate factor of 2, from N = 2 to N = 16. As for N = 32, the usage does not

follow this apparent trend, and rises sharply to 91%. For KG = 8 the usage surpasses the maximum

amount of LUTs available in the XC7Z020.

As for LUTs, the FF usage also scales accordingly to a 2× factor. In terms of LUTRAM, used

to store the network weights, the amount used increases by 2 with increasing values of N, as before,

and does not depend on KG. This is because the amount of weights only depends on the network

sizes M and N, and not on KG. Furthermore, unlike LUTs, it scales well with increasing network

sizes, and does not pose a limitation on the network size. The usage results for the XC7Z020 are

reported in Table 5.2, and in Table 5.3 the usages for the VC707.

5.2 Validation and Comparison

Over the course of this Section, the functionality of the network is verified against the Python

reference module of 5.2.1 that was developed as a reference, both for the forward propagation of

the network, as well as for the training algorithm. The methodology of this procedure is outlined

in Section 5.2.2. On Section 5.2.3, the performance results of Section 5.1.1 is translated into

how many classifications per second this design achieves, and how that figure compares with the

capabilities of the Python module and the current existing hardware implementation [5].

5.2.1 Reference Python Module

Before performing the Verilog description of the network, the ideas outlined in Section 2 were

tested first by building a software version of an LSTM Network. Since we want to quickly

test the ideas without much effort, Python and Numpy were used rather than MATLAB, since

Python/Numpy has higher performance at the same level of code complexity. The code for this

LUTRAM FF
N = 4 0.18% 3.39%
N = 8 4.41% 6.7%
N = 16 8.83% 13.36%
N = 32 17.66% 26.45%

Table 5.2: Flip-flop and LUTRAM usage for the XC7Z020
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LUTRAM FF LUT
N = 64 24.22% 9.14% 24.22%
N = 128 14.09% 18.3% 41.82%

Table 5.3: Flip-flop, LUTRAM and LUT usage for the VC707

Python class is listed in Appendix B. It supports both the forward propagation of an already trained

network, but also provides functions to train a model using the SPSA method outlined in Sec-

tion 2.1.4.2 and also Backpropagation Through-Time as presented in [2]. As the reader can attest

by running the code himself, the SPSA proves to be a valid approach for training these networks,

achieving convergence for the Machine Learning task that will be presented in the next paragraph,

although it converges slower than Backpropagation Through Time.

The learning problem presented to both the software and hardware network is the sum of two

binary numbers of 8 bits. The bits of each number at position i are input to the network as a vector,

and the network outputs its prediction of the correct value of the i-th bit of the result number. After

the whole number number is processed, the memory cells of the LSTM network are reset and a new

addition task can be presented to the network. Even though this seems a rather simple problem,

it accounts for all the essential issues at which this network excels: first, this is a classification

problem in which the Machine Learning algorithm needs to output a prediction based on the input

feature vector, and that prediction has to take into account the history of predictions so far, because

the current bit is the sum of not only the bits of the two operands, but also the carry generated at

the last few positions – this is where the memory cells of this special Neural Network come into

effect.

5.2.2 Methodology

The Python testbench that both trains and verifies the predictions of the software network of Ap-

pendix B is listed in Appendix C. The scripts train the network for a maximum of 100 epochs,

and in each epoch, the network is presented with 5000 8 bit additions for training, and then 100

8 bit additions for testing, where the prediction error is calculated, and the training convergence

is verified (when there is zero error for two consecutive times). After achieving convergence, the

script stores the trained network weights in Pickle format. These weights are, then, converted

to Q6.11 fixed-point format and directly loaded into the Verilog model by the Verilog testbench.

The Verilog testbench then applies in order the bits of randomly generated numbers, captures the

output bit and checks whether it is correct or not, and counts the number of incorrect bits.

This network has, then, two inputs (M = 2) and eight neurons (N = 8). Furthermore, the output

of the eight LSTM neurons is reduced to a single output by means of a simple neuron, as the one

described in Figure 2.1a. This introduces a further 5 clock cycle overhead that is not accounted

in Section 5.2.3, since it is not actually part of the LSTM Network. Although it was placed in

series in the datapath, after the LSTM network, it can be run in parallel with the LSTM network,

introducing no overhead whatsoever.

https://docs.python.org/3/library/pickle.html
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KG = 8 KG = 4 KG = 2 Python Speed-up
N = 4 N.A. 309.68 ns 259.12 ns 65 µs ×251
N = 8 793.46 ns 421.12 ns 317.52 ns 72 µs ×228
N = 16 1.497 µs 738.19 ns 461.336 ns 96 µs ×208
N = 32 N.D. 1.586 µs N.A. 185 µs ×117

Table 5.4: Total processing time for a single forward propagation on the XC7Z020

A Python script was written (see Appendix D) to automatically compile the Verilog code, gen-

erate the input and output data, and call Questasim to run the simulation of the HDL code. Fig-

ure 5.4 shows the waveform viewer window of a run of the Verilog testbench, and in Appendix E

shows the transcript of a successful run of this testbench, proving that the learning ability of the

Hardware network still retains the predicting capability of the software network.

5.2.3 Performance

To evaluate the performance, a metric was defined based on how many predictions it can produce

per second (i.e. produce a new result bit in the output sequence), in millions. The metric on [5]

is not very informative, since although a system can perform many calculations per second, if

those operations are redundant, that metric has no relevant information regarding how fast the

system can perform the actual task it was meant to do, which in this case is a complete Forward

Propagation through the network. The prediction time is the time elapsed since a new input vector

is applied to the moment the LSTM Network produces an output vector. Hence, we multiply the

number of clock cycles yielded by Equation 4.13 by the equivalent clock period from the synthesis

clock report of Figure 5.1. This result is epitomized in Table 5.4, where the calculation time of the

Python module’s Forward Propagation function is also included. This time was measured using

the timeit1 module, that allows the evaluation of the execution time of small pieces of code as well

as complete functions with arguments. The Python code was run on a Linux System, powered by

an i7-3770k Intel Processor, running at 4.2GHz.

The performance increase is significant, even for the slowest of the designs (the N = 32 net-

work). The hardware network is, at best, ×251 faster than the software counterpart, and at worst

×117 faster. Also, it is noticeable that increasing the level of resource sharing increases the com-

putation time, since the level of parallelism is lower.

Since the previous values are the time needed for a single forward propagation, to know how

many forward propagations we can perform per second, we only need to invert the previous values.

These values are presented in Figure 5.5. While the N = 8 and KG = 2 network is able to perform

around 3.15 million predictions per second, the Python model can only output around 14 thousand

predictions, which is a very significant result that proves the relevance of this implementation.

As for the larger-sized networks synthesized in the VC707, the results are also very promising.

For network sizes of N = 64 and N = 128, a complete forward propagation takes 1.14 µs and 2.052

1https://docs.python.org/3.5/library/timeit.html
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µs respectively, and for both the maximum clock frequency achievable was 140.845 MHz. Since

the design [5], for N = 128, takes an estimated 29.13 µs, this design yields an improvement of

14× over it.
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Chapter 6

Conclusion

The LSTM Hardware architecture presented surpassed the performance of the custom-built soft-

ware implementation by 251×, at best, and also the only current hardware implementation by

14×, and solely making use of internal FPGA resources, achieving a higher level of parallelism.

The higher levels of parallelism of this work are achieved at the cost of increasing design com-

plexity, which undermines its scalability for higher sized networks, unlike the implementation of

Chang et al. [5]. On the other hand, the HDL description of this work is parameterized, and is

thus very flexible for networks of any size, not requiring a redesign of the system every time a

different sized network is required. Furthermore, making use of internal memory makes it suitable

for including an on-chip learning system that can perform training on the network weights.

Given these results, this architecture places itself as the current state of the art system in LSTM

Neural Networks implementations in hardware, providing the most efficient implementation to

date.

A possible follow-up of the work of this thesis, is the integration of the training circuit in

Section 4.3.2, providing an LSTM Network with on-chip training capabilities.
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Appendix A

Remez Algorithm Implementation

1 """

2 Remez Algorithm for minimax polynomial approximation of transcendental functions

3

4 Jose Pedro Castro Fonseca, 2016

5

6 University of Porto, Portugal

7

8 """

9

10 import numpy as np

11 import matplotlib.pyplot as plt

12 from scipy.signal import argrelmax

13

14 # The target approximation function

15 def f(x):

16 return np.tanh(x)

17

18 # Nber of iterations

19 numIter = 8

20

21 # Approximation Interval

22 b = 3

23 a = 1

24

25 # Fixed-point system precision

26 prec = 2**(-10)

27 t = np.arange(a, b, prec)

28

29 # Polynomial Degree

30 n = 2

31

32 # Initial set of points

33 x = np.zeros((n+2,1))

34 for i in reversed(range(n+2)): x[n+1-i,0] = (a+b)/2+(b-a)/2*np.cos(i*np.pi/(n+1))

35

36 # The numerical matrices

37 A = np.zeros((n+2, n+2))

38 A[:,0] = 1

39 for i in range(n+2): A[i,n+1] = (-1)**(i+1)

40
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41 c = np.zeros((n+2,1))

42

43 # The algorithm iterations

44 for it in range(numIter):

45 # Compute the A matrix

46 for i in range(1,n+1):

47 A[:,i] = (x**i).T

48 # Compute the b matrix

49 for i in range(n+2): c[i] = f(x[i])

50

51 # Solve the system

52 p = np.dot( np.linalg.inv(A), c )

53

54 # Recompute the x point vector

55 pol = np.poly1d(np.reshape(np.flipud(p[0:n+1]).T, (n+1)))

56 diff = abs(pol(t) - f(t))

57

58 extremaIndices = argrelmax(abs(diff), axis=0, mode=’wrap’)[0]

59 if len(extremaIndices) < (n+2) :

60 extremaIndices = np.resize(extremaIndices, (1,n+2))

61 if abs(diff[t[len(t)-1]]) > abs(diff[t[len(t)-2]]):

62 extremaIndices[0,n+1] = len(t)-1

63 else:

64 extremaIndices = np.roll(extremaIndices, 1)

65 extremaIndices[0,0] = 0

66

67 x = t[extremaIndices].T

68 #Prints Progress

69 print("Error: ", max(abs(diff)))

70

71

72 print("*************************")

73 print("Coefficients: ", p[0:n+1].T)

74 print("Error: ", max(abs(diff)))

75 #print(extremaIndices)

76 plt.figure(1)

77 plt.plot(t, pol(t), t, f(t))

78

79 plt.figure(2)

80 plt.plot(t, diff)

81 plt.show()

Listing A.1: Python script that implements Remez’s algorithm



Appendix B

LSTM Layer Implementation

1 # -*- coding: utf-8 -*-

2 """

3 LSTM Layer Class

4 @author: Jose Pedro Castro Fonseca, University of Porto, PORTUGAL

5 """

6 import numpy as np

7 import time

8

9 # Defines the seed for random() as the current time in seconds

10 np.random.seed(round(time.time()))

11

12 # Evaluates the Sigmoid Function

13 def sigmoid(x):

14 output = 1/(1+np.exp(-x))

15 return output

16

17 # Evaluates the derivative of the Sigmoid Func, based on a previous sigmoid() call

18 def sigmoidPrime(output):

19 return output*(1-output)

20

21 # Evaluates the derivative of the TanH Func, based on a previous np.tanh() call

22 def tanhPrime(output):

23 return (1-output**2)

24

25 class LSTMlayer :

26

27 def __init__(self, inputUnits, hiddenUnits, learnRate, T):

28 # The Network Parameters, passed by the user

29 self.inputUnits = inputUnits

30 self.hiddenUnits = hiddenUnits

31 self.learnRate = learnRate

32 self.T = T

33 self.t = 0

34

35 # Initializing the matrix weights

36 #LSTM Block

37 self.Wz = np.random.random((hiddenUnits, inputUnits)) - 0.5

38 self.Wi = np.random.random((hiddenUnits, inputUnits)) - 0.5

39 self.Wf = np.random.random((hiddenUnits, inputUnits)) - 0.5

40 self.Wo = np.random.random((hiddenUnits, inputUnits)) - 0.5

53
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41

42 self.Rz = np.random.random((hiddenUnits, hiddenUnits)) - 0.5

43 self.Ri = np.random.random((hiddenUnits, hiddenUnits)) - 0.5

44 self.Rf = np.random.random((hiddenUnits, hiddenUnits)) - 0.5

45 self.Ro = np.random.random((hiddenUnits, hiddenUnits)) - 0.5

46

47 self.pi = np.random.random((hiddenUnits)) - 0.5

48 self.pf = np.random.random((hiddenUnits)) - 0.5

49 self.po = np.random.random((hiddenUnits)) - 0.5

50

51 self.bz = np.random.random((hiddenUnits)) - 0.5

52 self.bi = np.random.random((hiddenUnits)) - 0.5

53 self.bo = np.random.random((hiddenUnits)) - 0.5

54 self.bf = np.random.random((hiddenUnits)) - 0.5

55

56 # Updates

57 self.Wz_update = np.zeros_like(self.Wz)

58 self.Wi_update = np.zeros_like(self.Wi)

59 self.Wf_update = np.zeros_like(self.Wf)

60 self.Wo_update = np.zeros_like(self.Wo)

61

62 self.Rz_update = np.zeros_like(self.Rz)

63 self.Ri_update = np.zeros_like(self.Ri)

64 self.Rf_update = np.zeros_like(self.Rf)

65 self.Ro_update = np.zeros_like(self.Ro)

66

67 self.po_update = np.zeros_like(self.po)

68 self.pf_update = np.zeros_like(self.pf)

69 self.pi_update = np.zeros_like(self.pi)

70

71 self.bz_update = np.zeros_like(self.bz)

72 self.bi_update = np.zeros_like(self.bi)

73 self.bf_update = np.zeros_like(self.bf)

74 self.bo_update = np.zeros_like(self.bo)

75

76 # State vars

77 self.y_prev = np.zeros((hiddenUnits,self.T))

78 self.x_prev = np.zeros((inputUnits,self.T))

79 self.o_prev = np.zeros((hiddenUnits,self.T))

80 self.f_prev = np.zeros((hiddenUnits,self.T))

81 self.c_prev = np.zeros((hiddenUnits,self.T))

82 self.z_prev = np.zeros((hiddenUnits,self.T))

83 self.i_prev = np.zeros((hiddenUnits,self.T))

84

85 self.delta_y_list = np.zeros((hiddenUnits,self.T))

86 self.delta_o_list = np.zeros((hiddenUnits,self.T))

87 self.delta_c_list = np.zeros((hiddenUnits,self.T))

88 self.delta_f_list = np.zeros((hiddenUnits,self.T))

89 self.delta_i_list = np.zeros((hiddenUnits,self.T))

90 self.delta_z_list = np.zeros((hiddenUnits,self.T))

91

92 self.future_y = np.zeros_like(self.y_prev[:,1])

93 self.future_c = np.zeros_like(self.c_prev[:,1])

94

95 # Delta vectors for a previous layer

96 self.delta_x = np.zeros((inputUnits,self.T))

97
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98 def forwardPropagate(self, X):

99

100 # Note that in a list, accessing [-1] corresponds to the last element appended. so

y_prev[-1] == y^(t-1)

101 if (self.t != 0):

102 self.z_prev[:,self.t] = np.tanh( np.dot(self.Wz,X) + np.dot(self.Rz,self.y_prev

[:,self.t-1]) + self.bz.T )

103 self.i_prev[:,self.t] = sigmoid( np.dot(self.Wi,X) + np.dot(self.Ri,self.y_prev

[:,self.t-1]) + np.multiply(self.pi,self.c_prev[:,self.t-1]) + self.bi.T )

104 self.f_prev[:,self.t] = sigmoid( np.dot(self.Wf,X) + np.dot(self.Rf,self.y_prev

[:,self.t-1]) + np.multiply(self.pf,self.c_prev[:,self.t-1]) + self.bf.T )

105 self.c_prev[:,self.t] = np.multiply(self.z_prev[:,self.t],self.i_prev[:,self.t])

+ np.multiply(self.c_prev[:,self.t-1],self.f_prev[:,self.t])

106 self.o_prev[:,self.t] = sigmoid( np.dot(self.Wo,X) + np.dot(self.Ro,self.y_prev

[:,self.t-1]) + np.multiply(self.po,self.c_prev[:,self.t]) + self.bo.T )

107 self.y_prev[:,self.t] = np.multiply(np.tanh(self.c_prev[:,self.t]), self.o_prev

[:,self.t])

108 else:

109 self.z_prev[:,self.t] = np.tanh( np.dot(self.Wz,X) + np.dot(self.Rz,self.future_y

) + self.bz.T )

110 self.i_prev[:,self.t] = sigmoid( np.dot(self.Wi,X) + np.dot(self.Ri,self.future_y

) + self.bi.T )

111 self.f_prev[:,self.t] = sigmoid( np.dot(self.Wf,X) + np.dot(self.Rf,self.future_y

) + self.bf.T )

112 self.c_prev[:,self.t] = np.multiply(self.z_prev[:,self.t],self.i_prev[:,self.t])

+ np.multiply(self.future_c,self.f_prev[:,self.t])

113 self.o_prev[:,self.t] = sigmoid( np.dot(self.Wo,X) + np.dot(self.Ro,self.future_y

) + np.multiply(self.po, self.c_prev[:,self.t]) + self.bo.T )

114 self.y_prev[:,self.t] = np.multiply(np.tanh(self.c_prev[:,self.t]), self.o_prev

[:,self.t])

115

116 self.x_prev[:,self.t] = X

117

118 if (self.t == self.T-1) :

119 self.future_y = self.y_prev[:,self.t] # Saving the state of these variables

between iterations, otherwise y_prev will be zero!

120 self.future_c = self.c_prev[:,self.t]

121 self.t = 0 # Reset the time pointer within time frame

122 return self.y_prev[:,self.T-1]

123 else:

124 self.t += 1

125 return self.y_prev[:,self.t-1]

126

127

128

129 def backPropagate_T(self, upperLayerDeltas):

130 # EVALUATING THE DELTAS

131 for t in reversed(range(self.T)):

132 if (t == self.T-1):

133 self.delta_y_list[:,t] = (upperLayerDeltas[:,t])

134 self.delta_o_list[:,t] = (np.multiply( np.multiply(upperLayerDeltas[:,t],np.

tanh(self.c_prev[:,t])), sigmoidPrime(self.o_prev[:,t])))

135 self.delta_c_list[:,t] = (np.multiply(np.multiply(self.delta_y_list[:,t],

tanhPrime(np.tanh(self.c_prev[:,t]))), self.o_prev[:,t]))

136 else:
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137 self.delta_y_list[:,t] = (upperLayerDeltas[:,t] + np.dot(self.Rz,self.

delta_z_list[:,t+1]) + np.dot(self.Ri,self.delta_i_list[:,t+1]) + np.dot(self.Rf,self.

delta_f_list[:,t+1]) + np.dot(self.Ro,self.delta_o_list[:,t+1]))

138 self.delta_o_list[:,t] = (np.multiply( np.multiply(upperLayerDeltas[:,t],np.

tanh(self.c_prev[:,t])), sigmoidPrime(self.o_prev[:,t])))

139 self.delta_c_list[:,t] = (np.multiply(np.multiply(self.delta_y_list[:,t],

tanhPrime(np.tanh(self.c_prev[:,t]))), self.o_prev[:,t]) + np.multiply(self.delta_c_list

[:,t+1],self.f_prev[:,t+1]))

140

141 if (t != 0) :

142 self.delta_f_list[:,t] = (np.multiply(np.multiply(self.delta_c_list[:,t],self

.c_prev[:,t-1]), sigmoidPrime(self.f_prev[:,t])))

143

144 self.delta_i_list[:,t] = (np.multiply( np.multiply(self.delta_c_list[:,t],self.

z_prev[:,t]), sigmoidPrime(self.i_prev[:,t])))

145 self.delta_z_list[:,t] = (np.multiply( np.multiply(self.delta_c_list[:,t],self.

i_prev[:,t]), tanhPrime(self.z_prev[:,t])))

146 self.delta_x[:,t] = np.dot(self.Wz.T,self.delta_z_list[:,t]) + np.dot(self.Wi.T,

self.delta_i_list[:,t]) + np.dot(self.Wf.T,self.delta_f_list[:,t]) + np.dot(self.Wo.T,

self.delta_o_list[:,t])

147

148 # EVALUATING THE UPDATES

149 for t in range(self.T):

150 self.Wz += self.learnRate * np.outer(self.delta_z_list[:,t],self.x_prev[:,t])

151 self.Wi += self.learnRate * np.outer(self.delta_i_list[:,t],self.x_prev[:,t])

152 self.Wf += self.learnRate * np.outer(self.delta_f_list[:,t],self.x_prev[:,t])

153 self.Wo += self.learnRate * np.outer(self.delta_o_list[:,t],self.x_prev[:,t])

154 self.po += self.learnRate * np.multiply(self.c_prev[:,t],self.delta_o_list[:,t])

155 self.bz += self.learnRate * self.delta_z_list[:,t]

156 self.bi += self.learnRate * self.delta_i_list[:,t]

157 self.bf += self.learnRate * self.delta_f_list[:,t]

158 self.bo += self.learnRate * self.delta_o_list[:,t]

159

160 if(t < self.T-1):

161 self.Rz += self.learnRate * np.outer(self.delta_z_list[:,t+1],self.y_prev[:,t

])

162 self.Ri += self.learnRate * np.outer(self.delta_i_list[:,t+1],self.y_prev[:,t

])

163 self.Rf += self.learnRate * np.outer(self.delta_f_list[:,t+1],self.y_prev[:,t

])

164 self.Ro += self.learnRate * np.outer(self.delta_o_list[:,t+1],self.y_prev[:,t

])

165 self.pi += self.learnRate * np.multiply(self.c_prev[:,t],self.delta_i_list[:,

t+1])

166 self.pf += self.learnRate * np.multiply(self.c_prev[:,t],self.delta_f_list[:,

t+1])

167

168 return self.delta_x

Listing B.1: Python class that implements an LSTM Layer
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LSTM Layer Testbench

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import time

4 import sys

5 import pickle

6 import LSTMlayer

7

8 np.random.seed(round(time.time()))

9

10 # compute sigmoid nonlinearity

11 def sigmoid(x):

12 output = 1/(1+np.exp(-x))

13 return output

14

15 # convert output of sigmoid function to its derivative

16 def sigmoid_output_to_derivative(output):

17 return output*(1-output)

18

19 def sigmoidPrime(output):

20 return output*(1-output)

21

22 def tanhPrime(output):

23 return (1-output**2)

24

25 # training dataset generation

26 binary_dim = 8

27 largest_number = pow(2,binary_dim)

28

29 # Simulation Parameters

30 pert = float(sys.argv[1])

31 alpha = float(sys.argv[2])

32 wmax = float(sys.argv[3])

33 samplesPerEpoch = 500

34 input_dim = 2

35 hidden_dim = int(sys.argv[4])

36 output_dim = 1

37 maxEpoch = 100

38 trainSamp = 5000

39 testSamp = 100

40
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41 # initialize neural network weights

42 lstmLayer1 = LSTMlayer.LSTMlayer(input_dim, hidden_dim, output_dim, alpha, ’SPSA’, pert, wmax

, binary_dim)

43 plt.axis([0, maxEpoch, 0, binary_dim])

44 plt.title("Alpha={0} -- Perturbation={1} -- Wmax={2}".format(alpha, pert, wmax))

45 plt.ion()

46 plt.show()

47

48 epochError = 0

49 correct = 0

50 # training logic

51 for i in range(maxEpoch):

52

53 print("Training Epoch: ", i)

54

55 for j in range(trainSamp):

56 # generate a simple addition problem (a + b = c)

57 a_int = np.random.randint(largest_number/2) # int version

58 a = np.binary_repr(a_int, width=binary_dim) # binary encoding

59

60 b_int = np.random.randint(largest_number/2) # int version

61 b = np.binary_repr(b_int, width=binary_dim) # binary encoding

62

63 # true answer

64 c_int = a_int + b_int

65 c = np.binary_repr(c_int, width=binary_dim)

66

67 # -------------- THE FORWARD PROPAGATION STEP -------------- #

68 for position in range(binary_dim):

69

70 # generate input and output

71 X = np.array([[int(a[binary_dim - position - 1]), int(b[binary_dim - position -

1])]]).T

72 y = np.array([int(c[binary_dim - position - 1])]).T

73

74 # Perform a forward propagation through the network

75 y_pred = lstmLayer1.trainNetwork_SPSA(X, y)

76

77 lstmLayer1.resetNetwork()

78

79 for j in range(testSamp):

80 # generate a simple addition problem (a + b = c)

81 a_int = np.random.randint(largest_number/2) # int version

82 a = np.binary_repr(a_int, width=binary_dim) # binary encoding

83

84 b_int = np.random.randint(largest_number/2) # int version

85 b = np.binary_repr(b_int, width=binary_dim) # binary encoding

86

87 # true answer

88 c_int = a_int + b_int

89 c = np.binary_repr(c_int, width=binary_dim)

90

91 # -------------- THE FORWARD PROPAGATION STEP -------------- #

92 for position in range(binary_dim):

93

94 # generate input and output
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95 X = np.array([[int(a[binary_dim - position - 1]), int(b[binary_dim - position -

1])]]).T

96 y = np.array([int(c[binary_dim - position - 1])]).T

97

98 # Perform a forward propagation through the network

99 y_pred = lstmLayer1.forwardPropagate(X)

100 lstmLayer1.prev_c = lstmLayer1.c

101 lstmLayer1.prev_y = lstmLayer1.y

102

103 # decode estimate so we can print it out

104 epochError += int(np.abs(y - np.round(y_pred)))

105

106 lstmLayer1.resetNetwork()

107

108 if (epochError/testSamp == 0):

109 correct += 1

110 if(correct == 2):

111 print("Convergence Acheived in {0} epochs".format(i-2))

112 break

113 else:

114 correct = 0

115

116

117 print("Average Error:", epochError/testSamp)

118 #plt.scatter(i, epochError/testSamp, linestyle=’-.’)

119 #plt.draw()

120 epochError = 0

121

122 with open(’objs.pickle’, ’wb’) as f:

123 pickle.dump([lstmLayer1.Wz, lstmLayer1.Wi, lstmLayer1.Wf, lstmLayer1.Wo, lstmLayer1.Rz,

lstmLayer1.Ri, lstmLayer1.Rf, lstmLayer1.Ro, lstmLayer1.bz, lstmLayer1.bi, lstmLayer1.bf,

lstmLayer1.bo,], f)

124

125 with open(’layer.pickle’, ’wb’) as f:

126 pickle.dump(lstmLayer1, f)

127

128 print("Epochs: {0}".format(i+1))

129 wait = input("PRESS ENTER TO CONTINUE.")

Listing C.1: Python script that tests the LSTM Layer of Listing B.1
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Verification script for the Verilog
simulation of the network

1 import pickle

2 import numpy as np

3 import os

4

5 def real_to_Qnm(real, n, m):

6 if(real >= 0):

7 return int(np.round(real*(2**m)).astype(int)) & int(2**(n+m+1)-1)

8 else:

9 return int(2**(n+m+1) + np.round(real*(2**m)).astype(int)) & int(2**(n+m+1)-1)

10 def Qnm_to_real(real, n, m):

11 real = int(real) & int(2**(n+m+1)-1)

12 if(real >= 2**(n+m)):

13 return (real-2**(n+m+1))/(2**m)

14 else:

15 return real/(2**m)

16 def sigmoid(x):

17 output = 1/(1+np.exp(-x))

18 return output

19

20 numBits = 8

21 binary_dim = numBits

22 largest_number = pow(2,binary_dim)

23 hiddenSz = 8

24 QN = 6

25 QM = 11

26 numTrain = 1000

27 prevX = list()

28 outputGolden = list()

29 outputVerilog = list()

30 outputPython = list()

31 wrongBits = 0

32 f_in = open("goldenIn_x.bin", "w")

33

34

35

36

37 for i in range(numTrain):
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38 # Generates the golden input and output

39 a_int = np.random.randint(largest_number/2) # int version

40 a = np.binary_repr(a_int, width=binary_dim) # binary encoding

41

42 b_int = np.random.randint(largest_number/2) # int version

43 b = np.binary_repr(b_int, width=binary_dim) # binary encoding

44

45 c_int = a_int + b_int

46 c = np.binary_repr(c_int, width=binary_dim)

47

48 for position in range(binary_dim):

49 X = np.array([[int(a[binary_dim - position - 1]), int(b[binary_dim - position - 1])]]).T

50 y = np.array([int(c[binary_dim - position - 1])]).T

51 prevX.append(X)

52 f_in.write("{0:018b}\n".format(real_to_Qnm(X[0,0], QN, QM)))

53 f_in.write("{0:018b}\n".format(real_to_Qnm(X[1,0], QN, QM)))

54

55 f_in.close()

56

57 # Compiles and runs the Verilog simulation

58 os.system("vlog *.v")

59 os.system("vsim -voptargs=+acc -c -do \"run -all\" tb_network")

60

61 # Loads the pickled layer

62 f_pkl = open("layer.pickle", "rb")

63 layer = pickle.load(f_pkl);

64

65 # Loads the output values

66 layerOut = np.zeros((8,1));

67 fout = open("output.bin", "r");

68

69 layer.resetNetwork()

70

71 for n in range(numTrain):

72 for i in range(numBits):

73 line = fout.readline();

74 outputNetwork = Qnm_to_real(int(line), QN,QM);

75

76 # HDL Network output

77 temp = layer.forwardPropagate(prevX[i+numBits*n])

78 outputVerilog.append(int(np.round(sigmoid(outputNetwork))));

79 outputPython.append(int(np.round(temp)));

80

81 if(outputVerilog[i] ^ outputPython[i]) :

82 print("Error: ", outputVerilog, " --> ", outputPython)

83 print(sigmoid(outputNetwork), " --> ", temp)

84 wrongBits += 1

85

86 layer.prev_c = layer.c

87 layer.prev_y = layer.y

88

89 outputVerilog.reverse()

90 outputPython.reverse()

91

92 #print("Sample %d", n)

93 #print(outputVerilog, "\n", outputPython);

94 outputVerilog = list()
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95 outputPython = list()

96

97 layer.resetNetwork()

98

99 print("% wrong bits: ", 100*wrongBits/(numTrain*numBits))

Listing D.1: Python script that automates the verification procedure
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Transcript from a successful simulation
of the Hardware Network

1 QuestaSim-64 vlog 10.4c_5 Compiler 2015.11 Nov 14 2015

2 Start time: 20:23:41 on Jun 26,2016

3 vlog array_prod.v dot_prod.v gate.v network.v sigmoid.v tanh.v tb_network.v tb_top_network.v

test.v top_network.v weightRAM.v

4 -- Compiling module array_prod

5 -- Compiling module dot_prod

6 -- Compiling module gate

7 -- Compiling module network

8 -- Compiling module sigmoid

9 -- Compiling module tanh

10 -- Compiling module tb_network

11 -- Compiling module tb_top_network

12 -- Compiling module test

13 -- Compiling module top_network

14 -- Compiling module weightRAM

15

16 Top level modules:

17 tb_network

18 tb_top_network

19 test

20 End time: 20:23:42 on Jun 26,2016, Elapsed time: 0:00:01

21 Errors: 0, Warnings: 0

22 Reading pref.tcl

23

24 # 10.4c_5

25

26 # vsim -voptargs="+acc" -c -do "run -all" tb_network

27 # Start time: 20:23:44 on Jun 26,2016

28 # ** Note: (vsim-8009) Loading existing optimized design _opt7

29 # // Questa Sim-64

30 # // Version 10.4c_5 linux_x86_64 Nov 14 2015

31 # //

32 # // Copyright 1991-2015 Mentor Graphics Corporation

33 # // All Rights Reserved.

34 # //

35 # // THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION

36 # // WHICH IS THE PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS
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37 # // LICENSORS AND IS SUBJECT TO LICENSE TERMS.

38 # // THIS DOCUMENT CONTAINS TRADE SECRETS AND COMMERCIAL OR FINANCIAL

39 # // INFORMATION THAT ARE PRIVILEGED, CONFIDENTIAL, AND EXEMPT FROM

40 # // DISCLOSURE UNDER THE FREEDOM OF INFORMATION ACT, 5 U.S.C. SECTION 552.

41 # // FURTHERMORE, THIS INFORMATION IS PROHIBITED FROM DISCLOSURE UNDER

42 # // THE TRADE SECRETS ACT, 18 U.S.C. SECTION 1905.

43 # //

44 # Loading work.tb_network(fast)

45 # Loading work.network(fast)

46 # Loading work.gate(fast)

47 # Loading work.dot_prod(fast)

48 # Loading work.dot_prod(fast__1)

49 # Loading work.weightRAM(fast)

50 # Loading work.weightRAM(fast__1)

51 # Loading work.sigmoid(fast)

52 # Loading work.tanh(fast)

53 # Loading work.array_prod(fast)

54 # run -all

55 # Simulation started at 0.000000

56 # Input Sample 0

57 # Input Sample 100

58 # Input Sample 200

59 # Input Sample 300

60 # Input Sample 400

61 # Input Sample 500

62 # Input Sample 600

63 # Input Sample 700

64 # Input Sample 800

65 # Input Sample 900

66 # ** Note: $stop : tb_network.v(216)

67 # Time: 1636005 ns Iteration: 0 Instance: /tb_network

68 # Break in Module tb_network at tb_network.v line 216

69 # Stopped at tb_network.v line 216

70 VSIM 2>

71 # End time: 20:23:52 on Jun 26,2016, Elapsed time: 0:00:08

72 # Errors: 0, Warnings: 0

73 Error: [0, 1, 1, 1, 0, 0] --> [0, 1, 1, 1, 0, 1]

74 0.46793955524 --> [[ 0.50527151]]

75 Error: [0, 1, 1, 1, 0, 0] --> [0, 1, 1, 1, 0, 1]

76 0.46793955524 --> [[ 0.50527151]]

77 % wrong bits: 0.025

Listing E.1: Command line transcript of the python script that runs and validates the Hardware

network
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