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Abstract—Our work proposes a hardware architecture for a
Long Short-Term Memory (LSTM) Neural Network, aiming to
outperform software implementations, by exploiting its inherent
parallelism. The main design decisions are presented, along with
the proposed network architecture. A description of the main
building blocks of the network is also presented. The network is
synthesized for various sizes and platforms, and the performance
results are presented and analyzed. Our synthesized network
achieves a 251 times speed-up over a custom-built software
network, running on a Desktop computer, and a 14 times speed
up over the current state of the art.
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I. INTRODUCTION

EURAL Networks are one of the most commonly used

techniques in Deep Learning. This particular type of
network, a Long Short-Term Memory (LSTM) Network, is a
recursive neural network, with memory. These algorithms have
been profusely implemented in software, and their practical
applications are plentiful. However, the benefits of the inherent
parallelism offered by a dedicated hardware platform are not
exploited, and there are relatively few implementations of
Machine Learning algorithms in these kind of platforms.

II. LSTM NEURAL NETWORKS

LSTM Networks were originally formulated in [1], and their
operation is detailed in Equations 1.
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where © is the Hadamard multiplication. A layer has N LSTM
neurons and M inputs (i.e. the size of the layer that precedes
this).

Hitherto, there is but one actual implementation of an LSTM
network in hardware, published recently (March 2016) by
Chang et al. [2].

III. PROPOSED ARCHITECTURE
A. Network Architecture

Equations 1 suggest that the signals z(*), i £(!) and o(*)
do not depend on each other — they operate only on the
current input vector x(*) and the previous layer output y(*=1)

— and therefore can be calculated in parallel. Furthermore,
we can avoid a naive translation of the Equations 1, which
would replicate unnecessary resources (such as elementwise
multipliers and activation function calculators) and require
more area to save a negligible number of clock cycles, by
noting that one of the operands is the output of a tanh(x)
block and the other of a o(x), and they are then multiplied
(elementwise, of course) together. Instead of replicating these
‘tanh-o-(-)wise’ structures, we use a single one and choose
the operand according to the state that the network is currently
in. The issue about the elementwise multiplier for c¢(*), which
does not use the tanh activation function, can be solved by
adding another multiplexer that chooses between the output of
the tanh(x) module or the signal c(*~1),

The total requirement for DSP slices is
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On the other hand, the number of clock cycles needed to
output a result is simply

(N-Kg+6)+27T=33+ N - Kg. 3)

IV. RESULTS

A. Validation

The functionality of the network was verified against a
Python model of an LSTM network that was developed as
a reference, both for the forward propagation of the network,
as well as for the training algorithm.

The learning problem presented to both the software and
hardware network is the addition of two binary numbers of
8 bits. The i-th bit of each number is fed to the network as
a vector, and the network outputs its prediction of the correct
value of the i-th bit of the result. After the whole number is
processed, the memory cells of the LSTM network are reset
and a new addition task can be presented to the network.

B. Synthesis

The proposed network was first synthesized for a Xilinx
XC7Z020 SoC, for sizes N € {4,8,16,32}, varying the
resource sharing parameter K, while keeping M = 2. For a
network size of 32 and K = 8, the LUT usage exceeded the
LUT resources available in the FPGA, so only lower values of
Kqg were successfully synthesized. To synthesize the design
for sizes N € {64,128} a Virtex-7 VC707 board was used,
which has a XC7VX485T (speed grade -2) FPGA core.



TABLE I
TOTAL PROCESSING TIME FOR A SINGLE FORWARD PROPAGATION ON THE

XC7Z2020
Kg =38 Kg=14 Kg=2 Python | Speed-up
N =14 N.A. 309.68 ns | 259.12 ns 65 us X251
N =28 793.46 ns | 421.12 ns 317.52 ns 72 ps X228
N =16 1.497 pus | 738.19 ns | 461.336 ns 96 us X208
N =32 N.D. 1.586 us N.A. 185 us x117

1) Maximum Frequency: For N = 4, since there are only
4 rows to be multiplied, the maximum value of K¢ is 4, and
hence no synthesis was performed for Ko = 8 (N.A.); also,
since K¢ =2 and N = 32, it would use 32(8/2 + 3) = 224
DSP slices, and that exceeds the 220 slices available in the
XC7Z020, so there is no synthesis data (N.D.), as well.

Increasing K, the maximum clock speed decreases, and
that decrease is steeper for larger values of K. This means
that there is a critical path in the Matrix-Vector multiplication
unit, whose multiplexer becomes increasingly complex. On
the other hand, when K is the same, smaller networks are
faster than larger networks. The fastest design is an N = 4 and
K¢ = 2 network, with a clock frequency of 158.228 MHz, and
the slowest one is an N = 32 and K¢ = 4 network, clocked
at 101.523 MHz. The reference design used for validation in
Section IV-A is an N = 8 and K¢ = 2 network clocked at
154.321 MHz, which yields a clock period of 6.48ns. The
maximum clock frequency for the VC707 was 140.854 MHz
for both N = 64 and N = 128.

C. Performance

To evaluate the throughput of the system, a metric was
defined based on how many predictions it can produce per
second (i.e. produce a new result bit in the output sequence),
in millions. Hence, we multiply the number of clock cycles
yielded by Equation 3 by the equivalent clock period from the
synthesis clock report for each network. The Python code was
run on an i7-3770k Intel Processor, running at 4.2GHz, with
8GB of RAM.

The hardware network is, at best, x251 faster than the
software counterpart, and at worst x117 faster. Inverting the
values in Table I, we know how many forward propagations the
network can produce, per second. These values are presented
in Figure 1. While the N = 8 and K5 = 2 network is able
to perform around 3.15 million predictions per second, the
Python model can only output around 14 thousand predictions.

As for the larger-sized networks synthesized in the VC707,
the results are also very promising. For network sizes of N =
64 and N = 128, a complete forward propagation takes 1.14
ws and 2.052 us respectively, and for both the maximum clock
frequency achievable was 140.845 MHz. Since the design [2],
for N = 128, takes an estimated 29.13 us, our design yields
an improvement of 14x over it.

V. CONCLUSION

The LSTM Hardware architecture presented surpassed the
performance of the custom-built software implementation by
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Fig. 1. Millions of classifications per second of each design according to the
network size IN. The comparison is between the software Python model and
3 networks of different levels of resource sharing Kq.

251x, at best, and also the only current hardware imple-
mentation by 14x, and solely making use of internal FPGA
resources, achieving a higher level of parallelism. The higher
levels of parallelism of this work are achieved at the cost of
increasing design complexity, which limits its scalability to
higher sized networks, unlike the implementation of Chang et
al. [2]. On the other hand, the HDL description of this work
is parameterized, and is thus very flexible for networks of
any size, not requiring a redesign of the system every time
a differently sized network is required. Furthermore, making
use of internal memory makes it suitable for including an on-
chip learning system that can perform training on the network
weights.

Given these results, this architecture advances the current
state of the art in LSTM Neural Networks hardware implemen-
tations, providing the most efficient implementation to date.
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